Separation of Trigonelline, the major alkaloid in fenugreek seeds, is difficult because the extract of these seeds usually contains Trigonelline, choline, mucilage, and steroidal saponins, in addition to some other substances. This study amis to isolate the quaternary ammonium alkaloid (Trigonelline) and choline from fenugreek seeds (Trigonella-foenum graecum L.) which have similar physiochemical properties by modifying of the classical method. Seeds were defatted and then extracted with methanol. The presence of alkaloids was detected by using Mayer's and Dragendorff's reagents. In this work, trigonilline was isolated with traces of choline by subsequent processes of purification using analytical and preparative TLC techniques. Further identification was done by using HPLC, IR and MP. Pure Trigonelline was isolated from the seeds of Trigonella-foenum graecum excluding other alkaloid like choline. In this study, a new, fast and convenient method for isolation and purification of Trigonelline from fenugreek seeds has been established. Unlike other methods, this one excludes all the non-alkaloidal components from the fenugreek seeds extract.
To perform a secure evaluation of Indoor Design data, the research introduces a Cyber-Neutrosophic Model, which utilizes AES-256 encryption, Role-Based Access Control, and real-time anomaly detection. It measures the percentage of unpredictability, insecurity, and variance present within model features. Also, it provides reliable data security. Similar features have been identified between the final results of the study, corresponding to the Cyber-Neutrosophic Model analysis, and the cybersecurity layer helped mitigate attacks. It is worth noting that Anomaly Detection successfully achieved response times of less than 2.5 seconds, demonstrating that the model can maintain its integrity while providing privacy. Using neutrosophic sim
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
An accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive conditi
... Show MoreThe significance of the research lies in the fact that electronic technologies represent an important step in evaluating legal situations, and the research problem centered on the lack of attention to visual requirements and the absence of a clear image of legal situations that may be difficult for the referee to apply correctly in addition to the lack of focus on visual requirements and the unclear depiction of some legal cases which make it difficult for the referee to interpret them correctly This is because the referee's main tool is visual perception, which interprets live situations such as violations, fouls, and other cases that arise during a game Moreover, there are numerous responses and challenges in evaluating legal situ
... Show MoreThe majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution
... Show MoreThe proton momentum distributions (PMD) and the elastic
electron scattering form factors F(q) of the ground state for some
even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are
calculated by using the Coherent Density Fluctuation Model (CDFM)
and expressed in terms of the fluctuation function (weight function)
|F(x)|2. The fluctuation function has been related to the charge
density distribution (CDD) of the nuclei and determined from the
theory and experiment. The property of the long-tail behavior at high
momentum region of the proton momentum distribution has been
obtained by both the theoretical and experimental fluctuation
functions. The calculated form factors F (q) of all nuclei under s
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
The zeolite's textural properties have a significant effect on zeolite's effectiveness in the different industrial processes. This research aimed to study the textual properties of the NaX and FeX zeolites using the nitrogen adsorption-desorption technique at a constant low temperature. According to the International Union of Pure and Applied Chemistry, the adsorption-desorption isotherm showed that the studied materials were mixed kinds I/II isotherms and H3 type hysteresis. The Brunauer-Emmett-Teller isotherm was the best model to describe the nitrogen adsorption-desorption better than the Langmuir and Freundlich isotherms. The obtained adsorption capacity and Brunauer-Emmett-Teller surface area values for NaX were greater than FeX. Ac
... Show MoreBackground: Coronavirus disease 2019 (COVID-19) is
one of the updated challenges facing the whole world.
Objective: To identify the characteristics risk factors that
present in humans to be more liable to get an infection
than others.
Methods: A cross-sectional study was conducted for
positively confirmed 35 patients with polymerase chain
reaction in Wasit province at AL-Zahraa Teaching
Hospital from the period of March 13th till April 20th. All
of them full a questionnaire regarded by risk factors and
other comorbidities. Data were analyzed by SPSS version
23 using frequency tables and percentage. For numerical
data, the median, and interquartile range (IQR) were used.
Differences between categoric