This research deals with increasing the hardening and insulating the petroleum pipes against the conditions and erosion of different environments. So, basic material of epoxy has been mixed with Ceramic Nano Zirconia reinforcement material 35 nm with the percentages (0,1,2,3,4,5) %, whereas the paint basis of broken petroleum pipes was used to paint on it, then it was cut into dimensions (2 cm. × 2 cm.) and 0.3cm high. After the paint and percentages are completed, the samples were immersed into the paint. Then, the micro-hardness was checked according to Vickers method and thermal inspection of paint, which contained (Thermal conduction, thermal flux and Thermal diffusivity), the density of the painted samples was calculated,. The results of the research indicate that the concentration (5%ZrO2) gives the best results that the hardness of this concentration reached to (92 Hv). By contrast, the thermal conduction was continued at a insulation limit (2.4 W/m.K). The thermal diffusivity was (1.16 mm2/sec.), the thermal flux reached to (70.4 w.s 1/2/m2.K) and the density at the same percentage was (4.87 g/m3). This means that there is a linear proportionality and development with increasing in the percentage of Nano Zirconia additive to epoxy.
In this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficien
... Show MoreIn this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
هدفت الدراسة إلى التعرف على مستوى تقييم الإعلاميين العراقيين المقيمين في الأردن لتغطية الإصلاحات السياسية و الاقتصادية في العراق من قبل الفضائيات العراقية. و هدفت كذلك إلى التعرف على الف
YY Lazim, NAB Azizan, 2nd International Conference on Innovation and Entrepreneurship, 2014
Refrigerant R134a has been widely utilized in automotive air conditioning systems (AACSs); R134a has a high global warming potential (GWP) of 1430 despite having zero ozone depletion potential (ODP). Coming refrigeration systems must include refrigerants with low GWP and zero ODP. The aim of this experimental study is to evaluate the thermal performance of an (AAC) with different values of compressor speeds, i.e., (1000, 1700, and 2400 rpm) and two thermal loads, i.e., (500 and 1000 Watt) with the absence and presence of liquid suction heat exchanger (LSHX) using R134a. The results showed that adding LSHX enhanced the COP cycle by 7.18%, 10.7%, and 3.09% for the first, second, and third speed, respectively, at 500 Watt, while the en
... Show Moreإن النجاح في أداء المتطلبات الفنية والخططية في أي من الألعاب ألرياضيه يستوجب امتلاك العناصر الاساسيه المتعلقة بطبيعة الاداء ونوع الفعالية الرياضية الممارسة , لذا فان اغلب الألعاب الرياضية تعتمد على مكونات ألقدره التوافقيه والادراكيه الحسيه بوصفها احد العناصر الاساسيه في المستويات العليا لما توفره من قاعدة اقتران للصفات البدنيه والحر كيه وقدرات أجهزة الجسم الوظيفية , وفقا للأسس المعتمدة في بناء مهاراته, وع
... Show More