Cloth simulation and animation has been the topic of research since the mid-80's in the field of computer graphics. Enforcing incompressible is very important in real time simulation. Although, there are great achievements in this regard, it still suffers from unnecessary time consumption in certain steps that is common in real time applications. This research develops a real-time cloth simulator for a virtual human character (VHC) with wearable clothing. This research achieves success in cloth simulation on the VHC through enhancing the position-based dynamics (PBD) framework by computing a series of positional constraints which implement constant densities. Also, the self-collision and collision with moving capsules is implemented to achieve realistic behavior cloth modelled on animated characters. This is to enable comparable incompressibility and convergence to raised cosine deformation (RCD) function solvers. On implementation, this research achieves optimized collision between clothes, syncing of the animation with the cloth simulation and setting the properties of the cloth to get the best results possible. Therefore, a real-time cloth simulation, with believable output, on animated VHC is achieved. This research perceives our proposed method can serve as a completion to the game assets clothing pipeline.
In this work, the impact of different geomagnetic storm events on the plasma-sphere layer (ionosphere layer) over the northern and southern hemisphere regions was investigated during solar cycle 23. To grasp the influence of geomagnetic storms on the behavior and variation of the critical frequency parameter of the F2 ionospheric layer (foF2), five geomagnetic storms (classified as great, severe, and strong), with Disturbance storm time (Dst) values <-100 nT were chosen. Four stations located in different mid-latitude regions in northern and southern hemispheres were designated, the northern stations are: Millstone Hill (42.6° N, 288.50° W) and Rome (41.90° N, 12.50° E) and the southern stations are: Port Stanley (-51.60° S,
... Show MoreOne of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of
... Show MoreBackground: Diabetes and periodontitis are considered as chronic diseases with a bidirectional relationship between them. This study aimed to determine and compare the severity of periodontal health status and salivary parameters in diabetic and non-diabetic patients with chronic periodontitis. Materials and Methods: Seventy participants were enrolled in this study. The subjects were divided into three groups: Group I: 25 patients had type 2 diabetes mellitus with chronic periodontitis, Group 2: 25 patients had chronic periodontitis and with no history of any systemic diseases, Group 3: 20 subjects had healthy periodontium and were systemically healthy. Unstimulated whole saliva was collected for measurement of salivary flow rate and pH.
... Show MoreThe Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici
... Show MoreIn this research work a composite material was prepared contains a matrix which is unsaturated polyester resin (UPE) reinforced with carbon nanotube the percentage weight (0.1, 0.2, 0.4.0.5) %, and Zn particle the percentage weight (0.1, 0.2,0.4,0.5)%.
All sample were prepared by hand lay-up, process the mechanical tests contains hardness test, wear rate test, and the coefficient of thermal conductivity. The results showed a significant improvement in the properties of overlapping, Article containing carbon nano-tubes and maicroparticles of zinc because of its articles of this characteristics of high quality properties led to an, an increase in the coefficient of the rmalconductivity, and increase the hardness values with increased pe
This paper presents an analysis of selected qualitative characteristics of pellets produced from rape straw obtained from cultivations subjected to different fertilization treatments and from mixtures of straw selected for testing with crude glycerol obtained as a by-product from biodiesel production. The assessment focused on the following qualities of the obtained pellets: Moisture content, mechanical durability, heating value and main elements, that is, carbon, hydrogen, nitrogen, sulphur, chlorine and oxygen. The obtained results indicated that the different treatment regimens applied in spring rape cultivations had a significant impact on the physicochemical qualities of the straw. In terms of the heating value, traditional fer
... Show MoreThe energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det
... Show More