This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
This study is concerned with the concept of offering a point of view as a narrative construction element, especially the element and point of view of the novel to the letter Alcinmatugrave both business taken from masterpieces and literary works in the foundation or set of cinema. On the whole, the narrator participate in mock narrative process and support the narrator visual image, especially stories that need to exist scenes prove added to the image that uses signs of reality to take those marks a new dimension not only across the image, but also the intervention of the narrator in the re-formation of this realism marks surrounding Palms perceived and visible and put markers regularly between what the narrative of privacy and image, fo
... Show MoreIntellectual and material displacement is one of the design strategies through many mechanisms and means, and depends on the idea of changing the shape within the internal spaces at times and has concepts related to the transformation at other times. And represented by the boxes for travelers, the research problem emerged through the following question: (What is the effectiveness of displacement in the formal structures in the interior design of historical sites), and the aim of the study is to reveal the reality of the use of historical internal spaces and to determine the formal displacement that occurs as a result of change and transformation, and it included two topics, the first topic Transformation and the effectiveness of formal d
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThe emergence of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has resulted in a global health crisis leading to widespread illness, death, and daily life disruptions. Having a vaccine for COVID-19 is crucial to controlling the spread of the virus which will help to end the pandemic and restore normalcy to society. Messenger RNA (mRNA) molecules vaccine has led the way as the swift vaccine candidate for COVID-19, but it faces key probable restrictions including spontaneous deterioration. To address mRNA degradation issues, Stanford University academics and the Eterna community sponsored a Kaggle competition.This study aims to build a deep learning (DL) model which will predict deterioration rates at each base of the mRNA
... Show MoreUnderstanding the effects of fear, quadratic fixed effort harvesting, and predator-dependent refuge are essential topics in ecology. Accordingly, a modified Leslie–Gower prey–predator model incorporating these biological factors is mathematically modeled using the Beddington–DeAngelis type of functional response to describe the predation processes. The model’s qualitative features are investigated, including local equilibria stability, permanence, and global stability. Bifurcation analysis is carried out on the temporal model to identify local bifurcations such as transcritical, saddle-node, and Hopf bifurcation. A comprehensive numerical inquiry is carried out using MATLAB to verify the obtained theoretical findings and und
... Show MoreThe goal of this research is to develop a numerical model that can be used to simulate the sedimentation process under two scenarios: first, the flocculation unit is on duty, and second, the flocculation unit is out of commission. The general equation of flow and sediment transport were solved using the finite difference method, then coded using Matlab software. The result of this study was: the difference in removal efficiency between the coded model and operational model for each particle size dataset was very close, with a difference value of +3.01%, indicating that the model can be used to predict the removal efficiency of a rectangular sedimentation basin. The study also revealed
Nanosilica was extracted from rice husk, which was locally collected from the Iraqi mill at Al-Mishikhab district in Najaf Governorate, Iraq. The precipitation method was used to prepared Nanosilica powder from rice husk ash, after treating it thermally at 700°C, followed by dissolving the silica in the alkaline solution and getting a sodium silicate solution. Two samples of the final solution were collected to study the effect of filtration on the purity of the sample by X-ray fluorescence spectrometry (XRF). The result shows that the filtered samples have purity above while the non-filtered sample purity was around The structure analysis investigated by the X-ray diffraction (XRD), found that the Nanosilica powder has an amorphous
... Show MoreThis research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show More