The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The second level is features extraction which extracts features from the infected area based on hybrid features: grey level run length matrix and 1st order histogram based features. The attributes that extracted from second level are utilized in third level using FFNN to perform the classification process. The proposed framework is applied to database with different backgrounds, totally 120 color potato images, (80) samples used in training the network and the rest samples (40) used for testing. The proposed PDCNN framework is very effective in classifying four types of potato tubers diseases with 91.3% of efficiency.
The research amid to find out the extent of Iraqi oil companies commitment to implement internal control procedures in accordance with the updated COSO framework. As the research problem was represented in the fact that many of the internal control procedures applied in the Iraqi oil companies are incompatible with most modern international frameworks for internal control, including the integrated COSO framework, issued by the Committee of Sponsoring Organizations of the Tradeway Committee. The research followed the quantitative approach to handling and analysing data by designing a checklist to represent the research tool for collecting data. The study population was represented in the Iraqi oil companies, while the study sample
... Show MoreIn this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden
... Show MoreAl2O3 and Al2O3–Al composite coatings were deposited on steel specimens using Oxy-acetylene gas thermal spray gun. Alumina was mixed with Aluminum in six groups of concentrations (0, 5, 10,12,15 and 20% ) Al2O3, Specimens were tested for corrosion using Potentiodynamic polarization technique. Further tests were conducted for the effect of temperature on polarization curve and the hardness tests for the coated specimens. At first, Modelling was carried out using MINITAB-19, least square method, as a 2nd degree nonlinear model, bad results were achieved because of the high nonlinearity. Better result w
The continuous growth in technology and technological devices has led to the development of machines to help ease various human-related activities. For instance, irrespective of the importance of information on the Steam platform, buyers or players still get little information related to the application. This is not encouraging despite the importance of information in this current globalization era. Therefore, it is necessary to develop an attractive and interactive application that allows users to ask questions and get answers, such as a chatbot, which can be implemented on Discord social media. Artificial Intelligence is a technique that allows machines to think and be able to make their own decisions. This research showed that the dis
... Show MoreThe development of microcontroller is used in monitoring and data acquisition recently. This development has born various architectures for spreading and interfacing the microcontroller in network environment. Some of existing architecture suffers from redundant in resources, extra processing, high cost and delay in response. This paper presents flexible concise architecture for building distributed microcontroller networked system. The system consists of only one server, works through the internet, and a set of microcontrollers distributed in different sites. Each microcontroller is connected through the Ethernet to the internet. In this system the client requesting data from certain side is accomplished through just one server that is in
... Show MoreSummarized the idea of research is marked by "changes in the process of mass communication by using the international network of information" by specifying what data networking and mass communication is the transformation processes in the mass communication network where research aims to:1. Diagnostic data and transformations in the process of mass communication network.2. Provide a contact form commensurate with the characteristic mass of the International Network of electronic information, and research found to provide a communicative model called the (human contact network). In short (HCN) Humanity Communication Net also reached conclusions concerning the search process and communicative transformations and changes that have taken pla
... Show MoreSteganography is a mean of hiding information within a more obvious form of
communication. It exploits the use of host data to hide a piece of information in such a way
that it is imperceptible to human observer. The major goals of effective Steganography are
High Embedding Capacity, Imperceptibility and Robustness. This paper introduces a scheme
for hiding secret images that could be as much as 25% of the host image data. The proposed
algorithm uses orthogonal discrete cosine transform for host image. A scaling factor (a) in
frequency domain controls the quality of the stego images. Experimented results of secret
image recovery after applying JPEG coding to the stego-images are included.
In this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).