The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The second level is features extraction which extracts features from the infected area based on hybrid features: grey level run length matrix and 1st order histogram based features. The attributes that extracted from second level are utilized in third level using FFNN to perform the classification process. The proposed framework is applied to database with different backgrounds, totally 120 color potato images, (80) samples used in training the network and the rest samples (40) used for testing. The proposed PDCNN framework is very effective in classifying four types of potato tubers diseases with 91.3% of efficiency.
Abstract
The labeled research deal with (Entrepreneurship Organizations In the framework of strategic leadership practices: Field research in the Ministry of Oil), Search over the possibility of the influence of the practices of strategic leadership Which include
(Determine the strategic direction, The discovery of the fundamental estimators and maintain it, The development of the human capital, and Maintaining of an organizational culture influential, and Find a balanced regulatory Control) In a Entrepreneurship in its dimensions and its (innovation, risk, pre-emptive and independence) On group of heads of departments and authorities
... Show MoreRandom matrix theory is used to study the chaotic properties in nuclear energy spectrum of the 24Mg nucleus. The excitation energies (which are the main object of this study) are obtained via performing shell model calculations using the OXBASH computer code together with an effective interaction of Wildenthal (W) in the isospin formalism. The 24Mg nucleus is assumed to have an inert 16O core with 8 nucleons (4protons and 4neutrons) move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. The spectral fluctuations are studied by two statistical measures: the nearest neighb
AHA Al-Hilali, AAH Hamid, The Journal of Law Research, 2022
No country in the world has an ancient heritage of its own. It represents the product of the civilizations left behind by previous eras. It represents the development of urban life and its capital of the interest of its people in the field of construction and reconstruction. The urban heritage and its associated arts may seem to be a material heritage at first glance, but it is not free from the spiritual side. Therefore, the nations in different parts of the earth cherish it and care for it with all due diligence, because it mixes with its history, memories and emotions.
This research discusses the use of local environment materials in the production of urban fabric constituents. I
In this paper, a microcontroller-based electronic circuit have been designed and implemented for dental curing system using 8-bit MCS-51 microcontroller. Also a new control card is designed while considering advantages of microcontroller systems the time of curing was controlled automatically by preset values which were input from a push-button switch. An ignition based on PWM technique was used to reduce the high starting current needed for the halogen lamp. This paper and through the test result will show a good performance of the proposed system.
Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show More