In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge current and potential increase by increasing the applied voltage ranging between 300-700 V. Discharge current increased as working pressure increased in the beginning, and then semi-stabilized (slight increase) starting from 1×100 mbar, while discharge potential decreased at the beginning as working pressure increased and then semi-stabilized at the same point at which discharge current stabilized. The Paschen’s curves were compared with each other. It was concluded that the lower breakdown voltage was associated with lower work function of the (Au, Cu, and Ag) cathode material. Breakdown voltages were (395, 398, and 420) for Ag, Cu and Au respectively.
For criminal investigations, fingerprints remain the most reliable form of personal identification despite developments in other fields like DNA profiling. The objective of this work is to compare the performance of both commercial charcoal and activated carbon powder derived from the Alhagi plant to reveal latent fingerprints from different non-porous surfaces (cardboard, plain glass, aluminum foil sheet, China Dish, Plastic, and Switch). The effect of three variables on activated carbon production was investigated. These variables were the impregnation ratio (the weight ratio of KOH: dried raw material), the activation temperature, and the activation time. The effect factors were investigated using Central Composite Design
... Show MoreFor criminal investigations, fingerprints remain the most reliable form of personal identification despite developments in other fields like DNA profiling. The objective of this work is to compare the performance of both commercial charcoal and activated carbon powder derived from the Alhagi plant to reveal latent fingerprints from different non-porous surfaces (cardboard, plain glass, aluminum foil sheet, China Dish, Plastic, and Switch). The effect of three variables on activated carbon production was investigated. These variables were the impregnation ratio (the weight ratio of KOH: dried raw material), the activation temperature, and the activation time. The effect factors were investigated using Central Composite Design (CCD) softwa
... Show MoreWe wanted to find out how selenium (Se) affects broiler chicken performance, meat physicochemical properties, and selenium deposition in the tissues of broilers. Each of the 96 experimental pens had 30 chickens and included a total of 2,880 one-day-old broilers (Cobb 500 strain). A factorial design of four-by-three (SY + SS) and eight replicates (SY + SS) was used for the 12 experimental treatments, with selenium levels ranging from 0.15 to 0.60 ppm and organic (SY) or inorganic (SS) sources of selenium and their relationship (SY + SS). There were no differences in performance (P > 0.05) across Se levels or sources. 106 g/day of ADFI, 63 g/day of ADG, and 1.6844 kg/kg of FCR were found to be the averaging values for these three parameters:
... Show Morehe effect of different cultural conditions on production of bioemulsifier from Serratia marcescens S10 was determined; different carbon and nitrogen sources were used such as: different oils include: edible (vegetable) oils (olive oil, sesame oil, sun flower oil and corn oil) and heavy oils (oil 150, oil 60, oil 40) as carbon sources and (NH4Cl, casein, (NH4)2SO4, peptone, tryptone, gelatin and yeast extract) as nitrogen sources were added to production media. Bioemulsifier was estimated by measuring the surface tension (S.T), emulsification activity (E.A) and emulsification index (E24%). The best results of bioemulsifier production from Serratia marcescens S10 were obtained at pH8 and incubated at 37ºC for 5days, using sesame oil
... Show MoreKE Sharquie, AA Noaimi, GA Ibrahim, AS Al-Husseiny, Our Dermatology Online, 2016 - Cited by 3
A nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na
... Show MoreThe aim of this paper was to investigate the removal efficiencies of Zn+2 ions from wastewater by adsorption (using tobacco leaves) and forward osmosis (using cellulose triacetate (CTA) membrane). Various experimental parameters were investigated in adsorption experiment such as: effect of pH (3 - 7), contact time (0 - 220) min, solute concentration (10 - 100) mg/l, and adsorbent dose (0.2 - 5)g. Whereas for forward osmosis the operating parameters studied were: draw solution concentration (10 - 150) g/l, pH of feed solution (4 - 7), feed solution concentration (10 - 100) mg/l. The result showed that the removal efficiency by using adsorption was 70% and the removal efficiency by using forward osmosis was 96.2 %.
... Show MoreWe investigate the interaction of proton with a solid target, describing the wake effects by taking fitted parameters with experimental values of energy loss function ELF for copper using the dielectric function of random phase approximation (RPA). The results exhibited a damped oscillatory behavior in the longitudinal direction behind the projectile. In addition, the wake potential becomes asymmetric around the z-axis with proton velocity values higher than Fermi velocity, as well as it depends on the position of projectile in cylindrical coordinates.