In this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the efficiency of the proposed method that are solved through implementation in MATLAB R2018a.
This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions and for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency is used. The novel method is more accurate than the conventional Runge-Ku
... Show MoreEfficient operations and output of outstanding quality distinguish superior manufacturing sectors. The manufacturing process production of bending sheet metal is a form of fabrication in the industry of manufacture in which the plate is bent using punches and dies to the angle of the work design. Product quality is influenced by plate material selection, which includes thickness, type, dimensions, and material. Because no prior research has concentrated on this methodology, this research aims to determine V-bending capacity limits utilizing the press bending method. The inquiry employed finite element analysis (FEA), along with Solidworks was the tool of choice to develop drawings of design and simulations. The ASTM E290
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.
ABSTRACT Fifty extremely halophilic bacteria were isolated from local high salient soils named Al-Massab Al-Aam in south of iraq and were identified by using numerical taxonomy. Fourty strains were belong to the genus Halobacterium which included Hb. halobium (10%). Hb. salinarium (12.5%), Hb.cutirubrum (17.5%), Hb-saccharovorum (12.5%), Hb. valismortis (10%) and Hb. volcanii (37.5%). Growth curves were determined. Generation time (hr) in complex media and logarithmic phase were measured and found to be 10.37±0.59 for Hb. salinarium. 6.49 ± 0.24 for Hb.cutirubrum. 6.70±0.48 for Hb-valismonis, and 11.24 ± 0.96 for Hb. volcanii
In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error
... Show MoreBackground: Rehabilitation of the carious tooth to establish tooth structure integrity required cavity design that show a benign stress distribution. The aim of this study was to investigate the influence of the cavity position on the stress values in the reamining tooth structure restored with amalgam or resin composite. Materials and methods: Seven 2-D models of maxillary first premolar include class I cavity design was prepared, one sound tooth (A) 3 composite (B1, B2, and B3) and 3 amalgam (C1, C2, and C3). In design (BI and C1) the cavity position is in the mid distance between bacc-lingual cusp tip, design (B2 and C2) and (B3 and C3) shifted toward the buccal cusp and the lingual cusp for 0.5 mm respectively. One hundred N vertical
... Show More