This paper aims to prove an existence theorem for Voltera-type equation in a generalized G- metric space, called the -metric space, where the fixed-point theorem in - metric space is discussed and its application. First, a new contraction of Hardy-Rogess type is presented and also then fixed point theorem is established for these contractions in the setup of -metric spaces. As application, an existence result for Voltera integral equation is obtained.
The current research presents a study of the sculptural body in the space of the theatrical show through reviewing most of the ideas, propositions and workings presented by philosophers and directors within the space of the show, that there were various experiences of employing those spatial formations through the mediator (the space) based on sculpturing the body in achieving those formations, which contributed in building a symbolic picture of various structural connotations. That was formulated through the research chapters, which include the first chapter (the methodological framework) which consists of two sections. The first section (the duality of space formation and imaginations). The second section (sculptural body sequences in
... Show MoreThe Log-Logistic distribution is one of the important statistical distributions as it can be applied in many fields and biological experiments and other experiments, and its importance comes from the importance of determining the survival function of those experiments. The research will be summarized in making a comparison between the method of maximum likelihood and the method of least squares and the method of weighted least squares to estimate the parameters and survival function of the log-logistic distribution using the comparison criteria MSE, MAPE, IMSE, and this research was applied to real data for breast cancer patients. The results showed that the method of Maximum likelihood best in the case of estimating the paramete
... Show MoreIn this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
This paper deals to how to estimate points non measured spatial data when the number of its terms (sample spatial) a few, that are not preferred for the estimation process, because we also know that whenever if the data is large, the estimation results of the points non measured to be better and thus the variance estimate less, so the idea of this paper is how to take advantage of the data other secondary (auxiliary), which have a strong correlation with the primary data (basic) to be estimated single points of non-measured, as well as measuring the variance estimate, has been the use of technique Co-kriging in this field to build predictions spatial estimation process, and then we applied this idea to real data in th
... Show MoreThroughout this paper, a generic iteration algorithm for a finite family of total asymptotically quasi-nonexpansive maps in uniformly convex Banach space is suggested. As well as weak / strong convergence theorems of this algorithm to a common fixed point are established. Finally, illustrative numerical example by using Matlab is presented.
The study of fixed points on the maps fulfilling certain contraction requirements has several applications and has been the focus of numerous research endeavors. On the other hand, as an extension of the idea of the best approximation, the best proximity point (ƁƤƤ) emerges. The best approximation theorem ensures the existence of an approximate solution; the best proximity point theorem is considered for addressing the problem in order to arrive at an optimum approximate solution. This paper introduces a new kind of proximal contraction mapping and establishes the best proximity point theorem for such mapping in fuzzy normed space ( space). In the beginning, the concept of the best proximity point was introduced. The concept of prox
... Show MoreThis article will introduce a new iteration method called the zenali iteration method for the approximation of fixed points. We show that our iteration process is faster than the current leading iterations like Mann, Ishikawa, oor, D- iterations, and *- iteration for new contraction mappings called quasi contraction mappings. And we proved that all these iterations (Mann, Ishikawa, oor, D- iterations and *- iteration) equivalent to approximate fixed points of quasi contraction. We support our analytic proof by a numerical example, data dependence result for contraction mappings type by employing zenali iteration also discussed.
This study aims to Statement of the relationship between Total Quality Management philosophy and Organizational performance from the point of view of the internal customer. A comparison has been made between two companies, one of which applies the requirements of TQM well and the other does not apply these requirements as the (General Company for Electrical Industries/ Diyala) and (General Company for Electrical Industries/ Baghdad) to conduct the search, During the questionnaire prepared for this purpose and distributed to a sample of 30 employees in the General Company for Electric Industries/ Diyala and (20) employees of the General Company for Electrical Industries/ Baghdad. Their answers were analyzed using a simple correlation coef
... Show Moreفي هذا البحث نحاول تسليط الضوء على إحدى طرائق تقدير المعلمات الهيكلية لنماذج المعادلات الآنية الخطية والتي تزودنا بتقديرات متسقة تختلف أحيانا عن تلك التي نحصل عليها من أساليب الطرائق التقليدية الأخرى وفق الصيغة العامة لمقدرات K-CLASS. وهذه الطريقة تعرف بطريقة الإمكان الأعظم محدودة المعلومات "LIML" أو طريقة نسبة التباين الصغرى"LVR
... Show MoreThe purpose of this research is to introduce a concept of general partial metric spaces as a generalization of partial metric space. Give some results and properties and find relations between general partial metric space, partial metric spaces and D-metric spaces.