In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
In this effort, we define a new class of fractional analytic functions containing functional parameters in the open unit disk. By employing this class, we introduce two types of fractional operators, differential and integral. The fractional differential operator is considered to be in the sense of Ruscheweyh differential operator, while the fractional integral operator is in the sense of Noor integral. The boundedness and compactness in a complex Banach space are discussed. Other studies are illustrated in the sequel.
Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00
... Show MoreNumerical study of separation control on symmetrical airfoil, four digits (NACA
0012) by using rotating cylinder with double steps on its upper surface based on the computation of Reynolds-average Navier- Stokes equations was carried out to find the optimum configuration of unconventional airfoil for best aerodynamics performance. A model based on collocated Finite Volume Method was developed to solve the governing equations on a body-fitted coordinate system. A revised (k-w) model was proposed as a known turbulence model. This model was adapted to simulate the control effects of rotating cylinder. Numerical solutions were performed for flow around unconventional airfoil with cylinder to main stream velocities ratio in the range
... Show MoreOscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.
A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)
A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to
... Show MoreThis study aimed at some of the criteria used to determine the form of the river basins, and exposed the need to modify some of its limitations. In which, the generalization of the elongation and roundness ratio coefficient criterion was modified, which was set in a range between (0-1). This range goes beyond determining the form of the basin, which gives it an elongated or rounded feature, and the ratio has been modified by making it more detailed and accurate in giving the basin a specific form, not only a general characteristic. So, we reached a standard for each of the basins' forms regarding the results of the elongation and circularity ratios. Thus, circular is (1-0.8), and square is (between 0.8-0.6), the blade or oval form is (0.6-0
... Show More