Solar cells thin films were prepared using polyvinyl alcohol (PVA) as a thin film, with extract of natural pigment from local flower. A concentration of 0.1g/ml of polyvinyl alcohol solution in water was prepared for four samples, with various concentrations of plant pigment (0, 15, 25 and 50) % added to each of the four solutions separately for preparing (PVA with low concentrated dye , PVA with medium concentrated dye and PVA with high concentrated dye ) thin films respectively . Ultraviolet absorption regions were obtained by computerized UV-Visible (CECIL 2700). Optical properties including (absorbance, reflectance, absorption coefficient, energy gap and dielectric constant) via UV- Vis were tested, too. Fourier transform infrared (FTIR) spectrophotometer was employed to test the samples. Thermal analysis of thin films, including melting point (Tm), onset degree, endset degree, and crystallinity% were tested by differential scanning calorimeter (DSC). Three dimensional morphologies of thin films were inspected by atomic force microscopy (ATM). Contact angle also was tested as an index to hydrophilicity. Results proved that the ultraviolet and FTIR absorption increase after adding the natural pigment to PVA thin film, as well as it increases with increasing concentration of natural pigment. DSC analysis revealed an increase of PVA melting point when adding 15% concentration and it decreases with a 50% concentration of pigment. AFM results show an increase in surface roughness, hence the surface bearing index of PVA thin films is inversely proportional to pigment concentration. Contact angle decreases from 46.5° for pure PVA thin film to 44. 8°, 42. 6° and 35.2° after adding (15, 25, and 50)% concentration of natural dye respectively. Optical properties were enhanced by adding the natural dye, hence energy gap decreased from 3 eV for pure PVA to 2.3 eV for the PVA with a high concentrate dye. Dielectric constant increased with increasing concentration of dye, which leads to high polarization of solar cell.
Water scarcity is one of the most important problems facing humanity in various fields such as economics, industry, agriculture, and tourism. This may push people to use low-quality water like industrial-wastewater. The application of some chemical compounds to get rid of heavy metals such as cadmium is an environmentally harmful approach. It is well-known that heavy metals as cadmium may induce harmful problems when present in water and invade to soil, plants and food chain of a human being. In this case, man will be forced to use the low quality water in irrigation. Application of natural materials instead of chemicals to remove cadmium from polluted water is an environmental friendly approach. Attention was drawn in this research wor
... Show MoreThe main parameters and methods influencing the removal of Gentian Violet (GV) dye from aqueous media were investigated using a stachy plant in this study. The surface of the stachy plant was determined using FTIR spectra. Adsorption is influenced by the adsorbent's characteristic groups. The research took into account the usual conditions for GV dye adsorption by the stachy plant, such as the impact of contact time. Mass dosage , after 0.3 g the amount of adsorbed dye declines. Study pH and ionic strength, the results obtained showed that at pH 3 the largest adsorption of (GV) was seen, while at pH 9, the lowest adsorption was observed at 298 K, the adsorption kinetics and equilibrium constants were achieved, and the equilibr
... Show MoreThree different distribution modules of silicon solar cells in a panel are used in this study . Each module consists of five identical circular silicon solar cells of radius (5cm) and then the total panel areas are identical. The five solar cells are arranged in the panel in different shapes: circular, triangular and rectangular .The efficiency for these three panel distribution are measured indoor and outdoor. The results show that the efficiency is a function of the cells distribution.
Drug solubility and dissolution remain a significant challenge in pharmaceutical formulations. This study aimed to formulate and evaluate repanglinide (RPG) nanosuspension-based buccal fast-dissolving films (BDFs) for dissolution enhancement. RPG nanosuspension was prepared by the antisolvent-precipitation method using multiple hydrophilic polymers, including soluplus®, polyvinyl alcohol, polyvinyl pyrrolidine, poloxamers, and hydroxyl propyl methyl cellulose. The nanosuspension was then directly loaded into BDFs using the solvent casting technique. Twelve formulas were prepared with a particle size range of 81.6-1389 nm and PDI 0.002-1 for the different polymers. Nanosuspensions prepared with soluplus showed a favored mean particle size o
... Show MoreTwo different polyvinyl alcohol/polyvinyl chloride (PVA/PVC) hollow fiber composite nanofiltration membranes were prepared after PVC hollow fiber membranes were coated using dip-coating method with PVA aqueous solution, which was composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), and water [PVA/AEO9/water (4:0.5:95.5) wt%]. Effect of two different PVC hollow fiber immersion times in coating solution were studied. Cross-section, internal and external surfaces of the PVC hollow fibers and PVA/PVC composite nanofiltration membranes structures were characterized by scanning electron microscopy (SEM), pure water permeation flux and solutes rejection. It was found that, the coating layer thickness on the outer surface of the 19 wt% P
... Show MoreIntroduction: Melanin is a high-molecular weight pigment produced through the oxidative polymerization of phenolic or indolic compounds and plays a perfect role in UV-light shielding, as well as in photoprotection. Among biopolymers, melanin is unique in many aspects. This study is designed to screen Production, extraction and characterizes of an extracellular melanin pigment from clinically isolated P. aeruginosa. Objective: The aim of the current study is isolation and diagnosis of P.aeruginosa using vitek-2 compact system and screening the ability to produce melanin and characterization of extracted melanin by UV-vis, FTIR, XRD and SEM. Materials and methods: the samples swab inoculated on cetrimide agar as selective media and incubated
... Show MoreIn this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore st
... Show MoreSolar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreThe objective of the study is developing a procedure for production and characterization of rice husk ash (RHA). The effects of rice husk (RH) amount, burning/cooling conditions combined with stirring on producing of RHA with amorphous silica, highest SiO2, lowest loss on ignition (LOI), uniform particle shape distribution and nano structured size have been studied. It is concluded that the best amount is 20 g RH in 125 ml evaporating dish Porcelain with burning for 2 h at temperature 700 °C combined with cooling three times during burning to produce RHA with amorphous silica, SiO2 90.78% and LOI 1.73%. On the other hand, cooling and stirring times affect the variation of nano structured size and particle shape dis
... Show More