Preferred Language
Articles
/
bsj-3719
Natural Pigment –Poly Vinyl Alcohol Nano composites Thin Films for Solar Cell: nanocomposites thin film
...Show More Authors

Solar cells thin films were prepared using polyvinyl alcohol (PVA) as a thin film, with extract of natural pigment from local flower. A concentration of 0.1g/ml of polyvinyl alcohol solution in water was prepared for four samples, with various concentrations of plant pigment (0, 15, 25 and 50) % added to each of the four solutions separately for preparing (PVA with low concentrated dye , PVA with medium concentrated dye and PVA with high concentrated dye ) thin films respectively . Ultraviolet absorption regions were obtained by computerized UV-Visible (CECIL 2700). Optical properties including (absorbance, reflectance, absorption coefficient, energy gap and dielectric constant) via UV- Vis were tested, too.  Fourier transform infrared (FTIR) spectrophotometer was employed to test the samples. Thermal analysis of thin films, including melting point (Tm), onset degree, endset degree, and crystallinity% were tested by differential scanning calorimeter (DSC). Three dimensional morphologies of thin films were inspected by atomic force microscopy (ATM). Contact angle also was tested as an index to hydrophilicity. Results proved that the ultraviolet and FTIR absorption increase after adding the natural pigment to PVA thin film, as well as it increases with increasing concentration of natural pigment. DSC analysis revealed an increase of PVA melting point when adding 15% concentration and it decreases with a 50% concentration of pigment. AFM results show an increase in surface roughness, hence the surface bearing index of PVA thin films is inversely proportional to pigment concentration. Contact angle decreases from 46.5° for pure PVA thin film to 44. 8°, 42. 6° and 35.2° after adding (15, 25, and 50)%  concentration of natural dye respectively. Optical properties were enhanced by adding the natural dye, hence energy gap decreased from 3 eV for pure PVA to 2.3 eV for the PVA with a high concentrate dye. Dielectric constant increased with increasing concentration of dye, which leads to high polarization of solar cell.                                                                        

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Photostability of PMMA-TiO2 micro composites and PMMA-TiO2 nano composites
...Show More Authors

Comparison for the optical energy gap between pure
PMMA , PMMA-TiO2 micro composites and PMMA-TiO2 nano
composites have been investigated under uv – radiation , the
effect of time irradiation (0,6,12,24,48,72,96 and 120) have been
studied for these specimens to study the photic stability .The
results show that the photostability of the PMMA-TiO2
nanocomposite is higher than that of the pure PMMA and
PMMA-TiO2 micro composite under UV-light irradiation

View Publication Preview PDF
Publication Date
Thu Jun 10 2021
Journal Name
Journal Of Kufa−physics
The Structural and Optical Properties of Cobalt dioxide (CoO2 )Thin Films deposited via (SCSP) Technique for photovoltaic applications
...Show More Authors

Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Photostability Study of Some Modified Poly(vinyl chloride) Containing Pendant Schiff’s Bases
...Show More Authors

The polymers modified Poly(vinyl chloride) differ in their tendency to photo oxidation comparing with that unmodified. It has been studied Photostability for modified Poly(vinyl chloride) chains using Schiff’s bases derivative of (5-amino-1, 3, 4-thiadiazole-2-thiol) in a manner casting of plastic chips with thickness (40) in a solvent Tetrahydrofuran. It has been determined the effectiveness Photostability of these modified polymers through the photo degradation rate constant for photostabilizer (kd) for the modified Poly (vinyl chloride). Attributed efficiency of these Poly(vinyl chloride) chips in Photostability by replace the atom Cl Poly(vinyl chloride) chains ends more stable than light stabilizer.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu May 02 2024
Journal Name
Iraqi Journal Of Applied Physic
Photosensitivity of Nb2O5/Si Thin Films Produced via DC Reactive Sputtering at Different Substrate Temperatures
...Show More Authors

This study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f

... Show More
Publication Date
Tue Apr 02 2024
Journal Name
Iraqi Journal Of Applied Physics
Effect of Substrate Temperature on Characteristics and Gas Sensing Properties of Nb2O5/Si Thin Films
...Show More Authors

Thin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin film

... Show More
Publication Date
Tue Oct 30 2018
Journal Name
Iraqi Journal Of Physics
Annealing effects on optical and structural properties of chromium oxide thin film deposited by PLD technique
...Show More Authors

Optical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Synthesis and Study the Structure, electrical and optical properties of Bi2-xCdxSr2Ca2Cu3O10+ δ thin film Superconductors
...Show More Authors

View Publication
Scopus (12)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Design and Construction of Nanostructure TiO2 Thin Film Gas Sensor Prepared by R.F Magnetron Sputtering Technique
...Show More Authors

In this research, Mn-doped TiO2 thin films were grown on glass, Si and OIT/glass substrates by R.F magnetron sputtering technique with thicknesses (250 nm) using TiO2:Mn target under Ar gas pressure and power of 100 Watt. Through the results of X-ray diffraction, the prepared thin films are of the polycrystallization type after the process of annealing at 600°C for two hour The average crystalline size were 145.32, 280.97 and 261.23 nm for (TiO2:Mn) thin film on glass, Si and OIT/glass substrates respectively, while the measured surface roughness is between 0.981nm and 1.14 nm. The fabricated (TiO2:Mn) thin film on glass sensors have high sensitivity for hydrogen( H2 reducing gas) compared to the sensitivity for hydrogen gas on Si and OIT/

... Show More
View Publication
Crossref (27)
Crossref
Publication Date
Thu Oct 01 2009
Journal Name
Iraqi Journal Of Physics
Crystal Growth of Semiconductor CuAl0.4Ti0.6Se2 and studding the Structural Properties of its Alloy and Thin Film
...Show More Authors

Tetragonal compound CuAl0.4Ti0.6Se2 semiconductor has been prepared by
melting the elementary elements of high purity in evacuated quartz tube under low
pressure 10-2 mbar and temperature 1100 oC about 24 hr. Single crystal has been
growth from this compound using slowly cooled average between (1-2) C/hr , also
thin films have been prepared using thermal evaporation technique and vacuum 10-6
mbar at room temperature .The structural properties have been studied for the powder
of compound of CuAl0.4Ti0.6Se2u using X-ray diffraction (XRD) . The structure of the
compound showed chalcopyrite structure with unite cell of right tetragonal and
dimensions of a=11.1776 Ao ,c=5.5888 Ao .The structure of thin films showed

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Effect of indium content on X- ray diffraction and optical constants of InxSe1-x thin films
...Show More Authors

Alloys of InxSe1-x were prepared by quenching technique with
different In content (x=10, 20, 30, and 40). Thin films of these alloys
were prepared using thermal evaporation technique under vacuum of
10-5 mbar on glass, at room temperature R.T with different
thicknesses (t=300, 500 and 700 nm). The X–ray diffraction
measurement for bulk InxSe1-x showed that all alloys have
polycrystalline structures and the peaks for x=10 identical with Se,
while for x=20, 30 and 40 were identical with the Se and InSe
standard peaks. The diffraction patterns of InxSe1-x thin film show
that with low In content (x=10, and 20) samples have semi
crystalline structure, The increase of indium content to x=30
decreases degree o

... Show More
View Publication Preview PDF
Crossref (3)
Crossref