The speaker identification is one of the fundamental problems in speech processing and voice modeling. The speaker identification applications include authentication in critical security systems and the accuracy of the selection. Large-scale voice recognition applications are a major challenge. Quick search in the speaker database requires fast, modern techniques and relies on artificial intelligence to achieve the desired results from the system. Many efforts are made to achieve this through the establishment of variable-based systems and the development of new methodologies for speaker identification. Speaker identification is the process of recognizing who is speaking using the characteristics extracted from the speech's waves like pitch, tone, and frequency. The speaker's models are created and saved in the system environment and used to verify the identity required by people accessing the systems, which allows access to various services that are controlled by voice, speaker identification involves two main parts: the first part is the feature extraction and the second part is the feature matching.
The maintenance of the diesel engine parts in any electric power station contains many problems that lead to stopping. Several reasons lead to such problems; these reasons should be analyzed and evaluated in order to eliminate their effects. This paper is based on evaluation of the main causes that lead to diesel engine injector failure as a main part of electric power stations, using fault tree analysis (FTA). The FTA is the most broadly utilized strategies in the industrial area to perform reliability analysis of complex designing frameworks. A fault tree is a logical representation of the relationship of basic events that lead to a given unwanted event (i.e., top event).
Starting with introducing the FTA and how it could be uti
... Show More
Abstract
This research deals with Building A probabilistic Linear programming model representing, the operation of production in the Middle Refinery Company (Dura, Semawa, Najaif) Considering the demand of each product (Gasoline, Kerosene,Gas Oil, Fuel Oil ).are random variables ,follows certain probability distribution, which are testing by using Statistical programme (Easy fit), thes distribution are found to be Cauchy distribution ,Erlang distribution ,Pareto distribution ,Normal distribution ,and General Extreme value distribution . &
... Show MoreMany production companies suffers from big losses because of high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.
The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.
I had adopted in this research fuzzy linear program model with fuzzy figures
... Show MoreIn this work, optical system with different aperture shapes (circular, square, elliptical and triangle aperture) has been used for efficiency evaluation when the system involved moving factor in ideal case (aberration free). The optical system evaluate far moving object, therefore the image forming at image plane due to point spread function (image formula of incoherently illuminated point object). A mathematical treatment has been used to getting results by Gaussian numerical calculations method. The results show priority of circular aperture when optical system that submits of moving factor.
The δ-mixing ratios have been calculated for several γ-transitions in 90Mo using the 𝛔 𝐉 method. The results are compared with other references the agreement is found to be very good .this confirms the validity of the 𝛔 𝐉 method as a tool for analyzing the angular distribution of γ-ray. Key word: population parameter, γ-ray transition, 𝛔 𝐉 method, multiple mixing ratios.
Nano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show More