Preferred Language
Articles
/
bsj-3714
Convergence Analysis for the Homotopy Perturbation Method for a Linear System of Mixed Volterra-Fredholm Integral Equations

           In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
Cubic Trigonometric Spline for Solving Nonlinear Volterra Integral Equations

In this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Recent modification of Homotopy perturbation method for solving system of third order PDEs

This paper presents new modification of HPM to solve system of 3 rd order PDEs with initial condition, for finding suitable accurate solutions in a wider domain.

Scopus (18)
Scopus
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
A Numerical Study for Solving the Systems of Fuzzy Fredholm Integral Equations of the Second Kind Using the Adomian Decomposition Method

     In this paper, the Adomian decomposition method (ADM) is successfully applied to find the approximate solutions for the system of fuzzy Fredholm integral equations (SFFIEs) and we also study the convergence of the technique. A consistent way to reduce the size of the computation is given to reach the exact solution. One of the best methods adopted to determine the behavior of the approximate solutions. Finally, the problems that have been addressed confirm the validity of the method  applied in this research using a comparison by combining numerical methods such as the Trapezoidal rule and Simpson rule with ADM.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 14 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Generalized Spline Approach For Solving System of Linear Fractional Volterra Integro-Differential Equations

    In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of  linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Aug 28 2020
Journal Name
Iraqi Journal Of Science
Homotopy Transforms Analysis Method for Solving Fractional Navier- Stokes Equations with Applications

The presented work includes the Homotopy Transforms of Analysis Method (HTAM). By this method, the approximate solution of nonlinear Navier- Stokes equations of fractional order derivative was obtained.  The Caputo's derivative was used in the proposed method. The desired solution was calculated by using the convergent power series to the components. The obtained results are demonstrated by comparison with the results of Adomain decomposition method, Homotopy Analysis method and exact solution, as explained in examples (4.1) and (4.2). The comparison shows that the used method is powerful and efficient.

Scopus (7)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Crossref (2)
Crossref
View Publication
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
B-splines Algorithms for Solving Fredholm Linear Integro-Differential Equations

Algorithms using the second order of B -splines [B (x)] and the third order of B -splines [B,3(x)] are derived to solve 1' , 2nd and 3rd linear Fredholm integro-differential equations (F1DEs). These new procedures have all the useful properties of B -spline function and can be used comparatively greater computational ease and efficiency.The results of these algorithms are compared with the cubic spline function.Two numerical examples are given for conciliated the results of this method.

View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Estimation of Parameters for the Gumbel Type-I Distribution under Type-II Censoring Scheme

This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Deriving the Composite Simpson Rule by Using Bernstein Polynomials for Solving Volterra Integral Equations

In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.

Crossref (1)
Crossref
View Publication Preview PDF