A sensitive spectrophotometric method was developed for the estimation of cefdinir (CFD), a cephalosporin species. This study involves two methods, and the first method includes the preparing of azo dye by the reaction of CFD diazonium salt with 4-Tert-Butylphenol (4-TBP) and 2-Naphthol (2-NPT) in alkaline medium, which shows colored dyes measured at λmax 490 and 535 nm, respectively. Beer's law was obeyed along the concentration range of (3-100) μg.ml-1. The limits of detection were 0.246, 0.447 μg.ml-1 and molar absorptivities were 0.6129×104, 0.3361×104 L.mol-1cm-1 for (CFD-4-TBP) and (CFD-2-NPT), respectively. The second method includes preconcentration for cefdinir dyes by using cloud point extraction in the presence of Triton X-114 (10% v/v) and recording measurements using the UV-Visible technique. Cloud point extraction enables the drug to be precisely estimated under the optimal experimental conditions. The concentrations were ranged between (0.1-6.0) and (0.2-6.0) μg.ml-1. The limits of detection were 0.032, 0.054 μg.ml-1 and molar absorptivities were 0.4733×105, 0.2788×105 L.mol-1cm-1, respectively. Enrichment factors were 24.61, 24.58, and distribution coefficients were 1526, 1393 for (CFD-4-TBP), (CFD-2-NPT), respectively. The proposed methods have been applied for the determination of CFD in commercial formulation with no interference. The results appear to be no significant difference between the two methods.
An investigation was conducted for dewaxing of lubricating oil fraction by urea to reduce the pour point.In this study mixture of 45 % methyl ethyl ketone (MEK) and 55 % toluene was used as a solvent. The studied variables are mixing time (10-70 min), solvent to oil volume ratio (0.5:1- 2:1), urea to wax weight ratio (2- 6) and constant mixing speed 1500 rpm. By analysis of the experimental results, the best operating conditions achieved are mixing time 40 min, solvent/oil 2:1 volume ratio, and urea/wax 4:1 weight ratio. At these conditions the pour point of the lubricating oil decreases from 24 ° C to -13 °C.
In the present work studies were carried out to extract a cationic dye (Methylene Blue MB) from an aqueous solution using emulsion liquid membrane process (ELM). The organic phase (membrane phase) consists of Span 80 as emulsifier, sulfuric acid solution as stripping agent and hexane as diluent.
In this study, important factors influencing the extraction of methylene blue dye were studied. These factors include H2SO4 concentration in the stripping phase, agitation speed in the dye permeation stage, Initial dye concentration and diluent type.
More than (98%) of Methylene blue dye was extracted at the following conditions: H2SO4 concentration (1.25) M, agitation
... Show MoreSelective recovery of atropine from Datura innoxia seeds was studied. Applying pertraction in a rotating film contactor (RFC) the alkaloid was successfully recovered from native aqueous extracts obtained from the plant seeds. Decane as a liquid membrane and sulfuric acid as a stripping agent were used. Pertraction from native liquid extracts provided also a good atropine refinement, since the most of co-extracted from the plant species remained in the feed or membrane solution. Solid–liquid extraction of atropine from Datura innoxia seeds was coupled with RF-pertraction in order to purify simultaneously the extract obtained from the plant. Applying the integrated process, proposed in this study, a product containing 92.6% atropine was
... Show MoreAn investigation was conducted for the study of extraction of metal ions using aqueous biphasic systems. The extraction of iron, zinc and copper from aqueous sulphate media at different kinds of extractants SCN− , Cl- and I- , different values of pH of the feed solution, phase ratio, concentration of metals, concentration of extractant, concentration of polymer, and concentration of salt was investigated. Atomic absorption spectrophotometer was used to measure the concentration of iron, zinc and copper in the aqueous phase throughout the experiments. The results of the extraction experiments showed the use of SCN− as extractant, pH=2.5, phase ratio=1.5, concentration of metals 1g/l, concentration of extractant 0.06 %, concentration o
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
Iraqi crude Atmospheric residual fraction supplied from al-Dura refinery was treated to remove metals contaminants by solvent extraction method, with various hydrocarbon solvents and concentrations. The extraction method using three different type solvent (n-hexane, n-heptane, and light naphtha) were found to be effective for removal of oil-soluble metals from heavy atmospheric residual fraction. Different solvents with using three different hydrocarbon solvents (n-hexane, n-heptane, and light naphtha) .different variables were studied solvent/oil ratios (4/1, 8/1, 10/1, 12/1, and 15/1), different intervals of perceptual (15, 30-60, 90 and 120 min) and different temperature (30, 45, 60 and 90 °C) were used. The metals removal percent we
... Show More