Background: Adipose derived-mesenchymal stem cells have been used as an alternative to bone marrow cells in this study. Objective: We investigated the in vitro isolation, identification, and differentiation of stem cells into neuron cells, in order to produce neuron cells via cell culture, which would be useful in nerve injury treatment. Method: Mouse adipose mesenchymal stem cells were dissected from the abdominal subcutaneous region. Neural differentiation was induced using β-mercaptoethanol. This study included two different neural stage markers, i.e. nestin and neurofilament light-chain, to detect immature and mature neurons, respectively. Results: The immunocytochemistry results showed that the use of β-mercaptoethanol resulted in the successful production of neuron cells. This was attributable to the increase and significant overexpression of the nestin protein during the early exposure period, which resulted in the expression of the highest levels of nestin. In comparison, the expression level of neurofilament light-chain protein also increased with time but less than nestin. Non-treated mesenchymal stem cells, considered as control showed very low expression for both markers. Conclusion: The results of this study indicate that adipose mesenchymal cells represent a good, easily obtainable source of bone marrow cells used to developing the differentiation process.

We have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelen
... Show MorePore volume, pore diameter, and pore volume distribution of three of Iraqi natural clay deposites were measured using mercury intrusion porosimetry .The clays are white kaolin, colored kaolin, and bentonite .The results showed that the variation of the pore area of the clay deposites followed the following order :- Coloured Kaolin > White Kaolin > Bentonite While the pore volume may be arranged as in the following sequence:- White Kaolin > Coloured Kaolin >Bentonite Also , Bentonite exhibits the narrow range pore size distribution than the white and coloured kaolin.
Biofilm formation is one of the biggest challenges of scientists. Role of heavy metals in forming biofilm is not clear enough. Here, the effect of lead on biofilm formation by Bacillus spp. isolated from soil in terms of biofilm formation and remove was studied. In present study, 10 isolates of Bacillus spp were isolated from soil. The ability of all isolates to form biofilm was evaluated. The effect of lead on biofilm formation was studied by adding lead (pb) before forming biofilm. In another experiment the lead was added after biofilm formation to study the effect of lead on biofilm remove. The current study, showed the ability of all studied isolates to form biofilm. Maximum biofilm formation by Bacillus spp isolate number 8 (B8) follow
... Show MorePorous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too.
The XRD has been studied to determine the crystal structure and the crystalline size of PSi material
In this work, the copper metal was treated using Nd:YAG laser with energy 1Joul to enhance corrosion resistance and improve surface properties. The copper metal has many applications in industry as well as water, oil and gas pipes. The same conditions, (laser power density, scan speed, distance between paths, medium gas-air) were applied in the laser surface treatment, After laser treatment, the samples microstructures were investigated using optical microscope (OM) to examine micro structural changes due to laser irradiation. Specimen surfaces were investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), macro hardness, and corrosion test before and after laser treatment to
... Show MoreNowadays, university education stands in front of both students who feel they are weak and teachers who are addicted to using traditional and dependent teaching. This has led to have negative repercussions on the learner from different aspects, including the mental aspect and the academic achievement process. Therefore, the present research is concerned with finding a new teaching method that adopts the motivation by the fear of failure technique. Thus, the study aims to examine the effect of adopting this method on students’ academic achievement. To achieve this aim, an experimental method was used, and an achievement test was built for the curriculum material of level two students. The pretest test was applied on 17 male and female s
... Show MoreThe aim of this paper is to determine the feasibility of using fluorometric methods as an indicator for quality and contamination of milk with E.coli bacteria, and selection the suitable wavelength to be used with laser induced auto fluorescence. Three groups of milk samples were used in this study: Fresh pasteurized milk samples, milk samples containing different concentration of E.coli bacteria which were added artificially, and milk samples that were kept in refrigerator for 3-5 days. Thirteen excitation wavelengths were used to get the emission spectra for all milk samples using spectroflourometer .The results showed that the emission spectra at 275nm excitation wavelength gave a good differentiation between these three groups.
... Show MoreNanotechnology has shown a lot of promise in the oil and gas sectors, including nanoparticle-based drilling fluids. This paper aims to explore and assess the influence of various nanoparticles on the performance of drilling fluids to make the drilling operation smooth, cost effective and efficient. In order to achieve this aim, we exam the effect of Multi Wall Carbon Nanotube and Silicon Oxide Nanoparticles as Nanomaterial to prepare drilling fluids samples.
Anew method for mixing of drilling fluids samples using Ultra sonic path principle will be explained. Our result was drilling fluids with nano materials have high degree of stability.
The results of using Multiwall Carbon Nanotube and Silicon Oxide show t
... Show More
