Preferred Language
Articles
/
bsj-3638
Compact MIMO Slots Antenna Design with Different Bands and High Isolation for 5G Smartphone Applications
...Show More Authors

 In this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan markets. With a proposed dimension of 26 × 46 × 0.8 mm3, the medium-structured and small-sized MIMO antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss tangent of 0.035 and a dielectric constant of 4.3, the proposed MIMO antennas that had been simulated under the five different band coverage were discovered to have demonstrated a respective isolation level of about 14dB, 12dB, 21.5dB, 19dB and 20dB under a -10dB impendence bandwidth. In the measurement and fabrication outcomes that were derived from the use of the prototype MIMO in the (3.4-3.8) band of the Europe and Chinese markets, the proposed MIMO was thus found to have produced a better performance in terms of efficiency, isolation, and envelope correlation coefficient (ECC).

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 12 2013
Journal Name
Iraqi Journal Of Science
Determination of Optimum Mechanical Drilling Parameters for an Iraqi Field with Regression Model
...Show More Authors

Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
The Use of First Order Polynomial with Double Scalar Quantization for Image Compression
...Show More Authors

Publication Date
Mon Dec 21 2020
Journal Name
2020 Emerging Technology In Computing, Communication And Electronics (etcce)
An Integrated Grey Wolf Optimizer with Nelder-Mead Method for Workflow Scheduling Problem
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
2020 2nd Annual International Conference On Information And Sciences (aicis)
An Enhanced Multi-Objective Evolutionary Algorithm with Decomposition for Signed Community Detection Problem
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Using VGG Models with Intermediate Layer Feature Maps for Static Hand Gesture Recognition
...Show More Authors

A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 01 2023
Journal Name
The Medical Journal Of Malaysia
Serum interleukin-40: an innovative diagnostic biomarker for patients with systemic lupus erythematosus
...Show More Authors

Scopus (8)
Scopus
Publication Date
Sat Mar 01 2008
Journal Name
Iraqi Journal Of Physics
Transverse Magnetic Form Factor for 13C(e,e) 13C with Core-Polarization Effects
...Show More Authors

Elastic magnetic M1 electron scattering form factor has been calculated for the ground state J,T=1/2-,1/2 of 13C. The single-particle model is used with harmonic oscillator wave function. The core-polarization effects are calculated in the first-order perturbation theory including excitations up to 5ħω, using the modified surface delta interaction (MSDI) as a residual interaction. No parameters are introduced in this work. The data are reasonably explained up to q~2.5fm-1 .

View Publication Preview PDF
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation
...Show More Authors

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro

... Show More
View Publication Preview PDF
Crossref