The development of the internet of things (IoT) and the internet of robotics (IoR) are becoming more and more involved with our daily lives. It serves a variety of tasks some of them are essential to us. The main objective of SRR is to develop a surveillance system for detecting suspicious and targeted places for users without any loss of human life. This paper shows the design and implementation of a robotic surveillance platform for real-time monitoring with the help of image processing, which can explorer places of difficult access or high risk. The robotic live streaming is via two cameras, the first one is fixed straight on the road and the second one is dynamic with tilt-pan ability. All cameras have image processing capabilities to analyze, detect and track objects plus few other graphical functions. The components mentioned above built on top of the four-wheel vehicle system with high torque to provide mobility on rough terrain. This work is based on Raspberry Pi and can be controlled over Wi-Fi locally or publicly over the internet. The results show making a high potential, relatively low price robot with lots of features and functions that can perform multiple tasks simultaneously, all are crucial to surveillance and monitoring problems, controlled by a user from far distances and for a long time.
This study aims to detect cadmium accumulation in the soil of Baghdad. Twenty soil samples were collected randomly during November 2020 to cover the study area, emphasizing the nature of each area (agricultural, commercial, industrial, residential, roadside, and waste dumping sites). All soil samples were subjected to geochemical analysis using atomic absorption spectrometry (ASS) to determine the concentration of cadmium in Baghdad soil. The laboratory data was utilized to design the spatial analysis map using Arc GIS 10.4.1 to investigate the spatial distribution of cadmium. The results demonstrated that the total content of cadmium in the study area ranged from 0.121to 1.78 mg/kg. All results of cadmium concentrations are withi
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreA reduced-order extended state observer (RESO) based a continuous sliding mode control (SMC) is proposed in this paper for the tracking problem of high order Brunovsky systems with the existence of external perturbations and system uncertainties. For this purpose, a composite control is constituted by two consecutive steps. First, the reduced-order ESO (RESO) technique is designed to estimate unknown system states and total disturbance without estimating an available state. Second, the continuous SMC law is designed based on the estimations supplied by the RESO estimator in order to govern the nominal system part. More importantly, the robustness performance is well achieved by compensating not only the lumped disturbance, but also its esti
... Show MoreEarth cover of the city of Baghdad was studied exclusively within its administrative border during the period 1986-2019 using satellite scenes every five years, as Landsat TM5 and OLI8 satellite images were used. The land has been classified into ten subclasses according to the characteristics of the land cover and was classified using the Maximum Likelihood classifier. A study of the changing urban reality of the city of Baghdad during that period and the change of vegetation due to environmental factors, human influences and some human phenomena that affected the accuracy of the classification for some areas east of the city of Baghdad is presented. The year 2019 has been highlighted because of its privacy in changing the land cover of th
... Show MoreIntroduction: Melanin is a high-molecular weight pigment produced through the oxidative polymerization of phenolic or indolic compounds and plays a perfect role in UV-light shielding, as well as in photoprotection. Among biopolymers, melanin is unique in many aspects. This study is designed to screen Production, extraction and characterizes of an extracellular melanin pigment from clinically isolated P. aeruginosa. Objective: The aim of the current study is isolation and diagnosis of P.aeruginosa using vitek-2 compact system and screening the ability to produce melanin and characterization of extracted melanin by UV-vis, FTIR, XRD and SEM. Materials and methods: the samples swab inoculated on cetrimide agar as selective media and incubated
... Show MoreThe problem of text recognition and its applicability as part of images captured in the wild has gained a significant attention from the computer vision community in recent years. In contrast to the recognition of printed documents, scene text recognition is a difficult problem. Contrary to recognition of printed documents, recognizing a scene text is a challenging problem. Many researches focus on the problem of recognizing text extracted from natural scene images. Significant attempts have been made to address this problem in recent past. However, many of these attempts work on utilizing availability of strong context, which naturally limits the dictionary. This paper presents a review of recent papers related to scene text
... Show MoreBreast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with mis
The gaps and cracks in an image result from different reasons and affect the images. There are various methods concerning gaps replenishment along with serious efforts and proposed methodologies to eliminate cracks in diverse tendencies. In the current research work a color image white crack in-painting system has been introduced. The proposed inpainting system involved on two algorithms. They are Linear Gaps Filling (LGF) and the Circular Gaps Filling (CGF). The quality of output image depends on several effects such as: pixels tone, the number of pixels in the cracked area and neighborhood of cracked area and the resolution the image. The quality of the output images of two methods (linear method: average Peak Signal to Noise Ratio (PS
... Show MoreEye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera
... Show MoreImage classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re
... Show More