The unpredictable and huge data generation nowadays by smart computing devices like (Sensors, Actuators, Wi-Fi routers), to handle and maintain their computational processing power in real time environment by centralized cloud platform is difficult because of its limitations, issues and challenges, to overcome these, Cisco introduced the Fog computing paradigm as an alternative for cloud-based computing. This recent IT trend is taking the computing experience to the next level. It is an extended and advantageous extension of the centralized cloud computing technology. In this article, we tried to highlight the various issues that currently cloud computing is facing. Here in this research article, we present a comprehensive review of fog computing, differentiating it from cloud computing, also present various use-cases of fog computing in different domains, we came to conclude that Fog computing leads in an efficient energy resource management, leveraging the energy both in terms of consumption and cost scenarios. Further, we highlighted its key features, challenges and issues, resource optimization methods.
The contemporary development applications on scientific areas of acyclic and cyclic Schiff bases and their complexes.
Methods of teaching plays an important vole in the educational process
because is the link between the teacher and the learner. The process of
teaching doesut fulfill the desirable results unless the methods of guiding and
teaching are provided and through a qualified educationalist capable of
communicating the syllabus to the students in an easy and clear way. In spite
of the diversity of the methods of teaching ,there is no one way suitable for all
the educational purposes , all the sciences ,all the subjects ,all the levels of
growth ,levels of teaching, maturity and intelligences ,all teachers and
educationalists and all the circum stances surrounding the teaching processes
.The teacher is the one who choos
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreDapagliflozin is a novel sodium-glucose cotransporter type 2 inhibitor. This work aims to develop a new
validated sensitive RP-HPLC coupled with a mass detector method for the determination of dapagliflozin, its
alpha isomer, and starting material in the presence of dapagliflozin major degradation products and an internal
standard (empagliflozin). The separation was achieved on BDS Hypersil column (length of 250mm, internal
diameter of 4.6 mm and 5-μm particle size) at a temperature of 35℃. Water and acetonitrile were used as
mobile phase A and B by gradient mode at a flow rate of 1 mL/min. A wavelength of 224nm was selected to
perform detection using a photo diode array detector. The method met the
ABSTRACT
This research included the preparation and characterization of new demulsifies from natural and synthetic polymers of chitosan and polyvinyl alcohol that are environmentally friendly and at the same time have high efficacy comparable to emulsifiers. imported foreign. The prepared compounds were examined using infrared spectroscopy and nuclear magnetic resonance spectroscopy, and all the spectral signals of the polymers were in good agreement with the chemical composition of the polymers. And the melting and decomposition that occur on polymers at high temperatures. The effect of the length and type of side chain in the compositions of polymers on the process of water separation of oil emulsions w
... Show MoreIn this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For
... Show MoreThis paper describes the first occurrence of the monogenetic trematode Silurodiscoides
mediacanthus (Achmerow, 1952) in Iraq from gills of the cyprinid fish Barbus luteus from
Diyala river, Diyala province, Iraq. The description and measurements of this parasite were
given. In addition, key for the identification of the three species of Silurodiscoides, so far
recorded from freshwater fishes of Iraq, is included.
<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show More