Preferred Language
Articles
/
bsj-3476
Estimating the Reliability Function of (2+1) Cascade Model

This paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of Reliability through the Wiener Degradation Process Based on the Genetic Algorithm to Estimating Parameters

      In this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process,  where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for the Parameters and Reliability Function of Basic Gompertz Distribution under Squared Log Error Loss Function

In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jan 25 2022
Journal Name
Iraqi Journal Of Science
Semi (1, 2)*-Maximal Soft (1, 2)*-Pre-Open Sets and Semi (1, 2)*-Minimal Soft (1, 2)*-Pre-Closed Sets In Soft Bitopological Spaces

 


In this paper, we introduce and study new types of soft open sets and soft closed
sets in soft bitopological spaces (X,~ ,~ ,E) 1 2   , namely, (1,2)*-maximal soft open
sets, (1,2)*-maximal soft (1,2)*-pre-open sets, semi (1,2)*-maximal soft (1,2)*-preopen
sets, (1,2)*-maximal soft closed sets, (1,2)*-maximal soft (1,2)*-pre-closed
sets, (1,2)*-minimal soft open sets, (1,2)*-minimal soft (1,2)*-pre-open sets, (1,2)*-
minimal soft closed sets, (1,2)*-minimal soft (1,2)*-pre-closed sets, and semi (1,2)*-
minimal soft (1,2)*-pre-closed sets. Also, properties and the relation among these
concepts have been studied.

 

View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
Discussing Fuzzy Reliability Estimators of Function of Mixed Probability Distribution By Simulation

This paper deals  with constructing mixed probability distribution  from exponential with scale parameter (β) and also Gamma distribution with (2,β), and the mixed proportions are (  .first of all, the probability density function (p.d.f) and also cumulative distribution function (c.d.f) and also the reliability function are obtained. The parameters of mixed distribution, ( ,β)  are estimated by three different methods, which are  maximum likelihood, and  Moments method,as well proposed method (Differential Least Square Method)(DLSM).The comparison is done using simulation procedure, and all the results are explained in tables.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Economics And Administrative Sciences
Fuzzy Bridge Regression Model Estimating via Simulation

      The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
On the Estimation of Stress-Strength Model Reliability Parameter of Power Rayleigh Distribution

      The aim of this paper is to estimate a single reliability system (R = P, Z > W) with a strength Z subjected to a stress W in a stress-strength model that follows a power Rayleigh distribution. It proposes, generates and examines eight methods and techniques for estimating distribution parameters and reliability functions. These methods are the maximum likelihood estimation(MLE), the exact moment estimation (EMME), the percentile estimation (PE), the least-squares estimation (LSE), the weighted least squares estimation (WLSE) and three shrinkage estimation methods (sh1) (sh2) (sh3). We also use the mean square error (MSE) Bias and the mean absolute percentage error (MAPE) to compare the estimation methods. Both theoretical c

... Show More
Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Estimating the Survival Function for the Patients Suffer from the Lung Cancer Disease

          In this paper, the survival function has been estimated for the patients with lung cancer using different parametric estimation methods depending on sample for completing real data which explain the period of survival for patients who were ill with the lung cancer based on the diagnosis of disease or the entire of patients in a hospital for a time of two years (starting with 2012 to the end of 2013). Comparisons between the mentioned estimation methods has been performed using statistical indicator mean squares error, concluding that the estimation of the survival function for the lung cancer by using pre-test singles stage shrinkage estimator method was the best   . <

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Employment of the genetic algorithm in some methods of estimating survival function with application

Intended for getting good estimates with more accurate results, we must choose the appropriate method of estimation. Most of the equations in classical methods are linear equations and finding analytical solutions to such equations is very difficult. Some estimators are inefficient because of problems in solving these equations. In this paper, we will estimate the survival function of censored data by using one of the most important artificial intelligence algorithms that is called the genetic algorithm to get optimal estimates for parameters Weibull distribution with two parameters. This leads to optimal estimates of the survival function. The genetic algorithm is employed in the method of moment, the least squares method and the weighted

... Show More
Scopus (2)
Scopus
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Nadaraya-Watson Estimator a Smoothing Technique for Estimating Regression Function

    The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.

    In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes.  Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo

... Show More
Crossref
View Publication Preview PDF