Preferred Language
Articles
/
bsj-3468
Effect of Dopant Concentration on the Structural, Optical and Sensing Properties of (SnO2)1-x(TiO2:CuO)x Sprayed Films
...Show More Authors

      Spray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO2 , CuO) amount. The effect of mixing concentration on the optical properties of the films was also investigated. The reflectance and transmittance spectra  in the wavelength range (300-1100) nm were employed to determine the optical properties such as energy band gap (Eg) and refractive index (n),  extinction coefficient  (k) , real and imaginary parts of dielectric constants (ε1, ε2) for (SnO2)1-x(TiO2:CuO)x films. The energy band gap omit of which showed reduction from (3.65 to 2.2) eV by reducing of SnO2 amount from (100 to 70) % .The reduction of energy band gap was ascribed to the new tail states introduced in the band gap of tin oxide. The sensitivity of the prepared sensor film was determined resistance difference of the films when exposed to oxidizing gas. The data declared that the mixed SnO2 films have better sensitivity in comparison with unmixed films.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Diagnose COVID-19 by using hybrid CNN-RNN for Chest X-ray
...Show More Authors

<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121

... Show More
View Publication
Scopus (17)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
The effects of raddiation on the optical properties of GERMANIUM SELENIDE semiconductor.
...Show More Authors

Study was made on the optical properties of Ge2oSe8othinfilms prepared by vac-uum evaporation as radiated by (0,34,69) Gy of 13 ray.The optical band gab Eg and tailing band A.Et were studied in the photon energy range ( 1 to 3)eV. The a-Ge20Se8o film was found to be indirect gap with energy gap of (1.965,1.9 , 1.82) eV at radiated by B ray with absorption doses of (0,34,69)Gy respectively.The Ea and AEt of Ge20Se80 films showed adecrease in E8 and an increase in AEt with radiation. This be-havior may be related to structural defects and dangling bonds.

View Publication Preview PDF
Publication Date
Tue Dec 25 2018
Journal Name
Journal Of Engineering Science And Technology
RIETVELD TEXTURE REFINEMENT ANALYSIS OF LINDE TYPE A ZEOLITE FROM X-RAY DIFFRACTION DATA
...Show More Authors

Scopus (31)
Scopus
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Temperature Dependence of Hall Mobility AndCarrier Concentration of pb0.55S0.45 Films
...Show More Authors

Measurements of Hall effect properties at different of annealing temperature have been made on polycrystalline Pb0.55S0.45 films were prepared at room temperature by thermal evaporation technique under high vacuum 4*10-5 torr . The thickness of the film was 2?m .The carrier concentration (n) was observed to decrease with increasing the annealing temperature. The Hall measurements showed that the charge carriers are electrons (i.e n-type conduction). From the observed dependence on the temperature, it is found that the Hall mobility (µH), drift velocity ( d) carrier life time ( ), mean free path (?) were increased with increasing annealing temperature

View Publication Preview PDF
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Digest Journal Of Nanomaterials And Biostructures
Preparation and study effect of vacuum annealing on structure and optical properties of AgCuInSe<inf>2</inf> thin film
...Show More Authors

Scopus (14)
Scopus Clarivate
Publication Date
Tue Feb 01 2022
Journal Name
Chalcogenide Letters
Copper telluride thin films for gas sensing applications
...Show More Authors

Scopus (4)
Scopus
Publication Date
Mon Oct 16 2023
Journal Name
Nano And Medical Materials
Preparation and analysis of silver Nanoparticles (Ag Nps) by plant extract techniques of green tea and study optical and structural properties
...Show More Authors

Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.

View Publication
Crossref (5)
Crossref
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Experimental Study of Thermophysical Properties of TiO2 Nanofluid
...Show More Authors

Titanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction

... Show More
View Publication Preview PDF
Publication Date
Wed May 29 2019
Journal Name
Iraqi Journal Of Physics
Effect of current intensity on structural properties of cupper iodine nanoparticles produced by exploding Cu wire
...Show More Authors

Exploding wire Technique is a way for production metal and its compound nanoparticle that is capable of production of bulk amount at low cost semiconductor. In this work a copper iodine nanoparticles were fabricate by exploding copper wires with different currents in iodine solution. The produced samples were examined by XRD, FTIR, SEM and TEM to characterize their properties. The XRD proved the Nano-size for producer. The crystalline size increases with increasing current. FTIR measurements show a peaks located at 638.92 for Cu-I stretch bond indicate on formation of copper iodide compound and the peaks intensities increase with increasing current. The SEM and TEM measurements show that the thin films have nanostructures.

View Publication Preview PDF
Crossref