Spray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO2 , CuO) amount. The effect of mixing concentration on the optical properties of the films was also investigated. The reflectance and transmittance spectra in the wavelength range (300-1100) nm were employed to determine the optical properties such as energy band gap (Eg) and refractive index (n), extinction coefficient (k) , real and imaginary parts of dielectric constants (ε1, ε2) for (SnO2)1-x(TiO2:CuO)x films. The energy band gap omit of which showed reduction from (3.65 to 2.2) eV by reducing of SnO2 amount from (100 to 70) % .The reduction of energy band gap was ascribed to the new tail states introduced in the band gap of tin oxide. The sensitivity of the prepared sensor film was determined resistance difference of the films when exposed to oxidizing gas. The data declared that the mixed SnO2 films have better sensitivity in comparison with unmixed films.
In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show MoreBackground: Bone mineral density (BMD) has been assessed using Dual-Energy X-ray absorptiometry (DEXA). This procedure is considered to be of vital importance in assessing the general condition of individuals concerning their skeletal mineralization. BMD is measured according to the results of the DEXA examination of the vertebral column and pelvis. Although diabetes mellitus (D.M.)is known to affect BMD, the information regarding this relationship is not currently particularly clear. Objective: This study concentrates on the point that the assessment of BMD for the vertebral column is insuffi-cient to give a realistic and correct picture of the mineralization of the remaining part of the skeleton. Besides, this study elicited a gen
... Show MoreEffect of [Cu/In] ratio on the optical properties of CuInS2 thin films prepared by chemical spray pyrolysis on glass slides at 300oC was studied. The optical characteristics of the prepared thin films have been investigated using UV-VIS spectrophotometer in the wavelength range (300-1100 nm). The films have a direct allow electronic transition with optical energy gap (Eg) decreased from 1.51 eV to 1.30 eV with increasing of [Cu/In] ratio and as well as we notice that films have different behavior when annealed the films in the temperature 100oC (1h,2h), 200oC (1h,2h) for [Cu/In]=1.4 . Also the extinction coefficient (k), refractive index (n) and the real and imaginary dielectric constants (ε1, ε2) have been investigated
Thin film technology is one of the most important technologies
that have contributed to the development of semiconductors and their
applications in several industrial fields. The Iron Oxides (Fe20) and
(Co3O4) thin films and their applications are of importance, in that these
two materials are considered as important industrial materials, and used
in spectrally selective coating, temperature sensors, resistive heaters, and
photo cells.
Thin films of Iron Oxide (Fe20,), Cobalt Oxide (Co304) and
their mixtures in different ratios (75:25, 50:50, 25:75) were prepared by
the method of chemical spray pyrolysis deposition at different thicknesses
(77s t S200) nm on cover-glass substrates: thickness of (1) mm at
PbxCd1-xSe compound with different Pb percentage (i.e. X=0,
0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin films
were deposited by thermal evaporation on glass substrates at film
thickness (126) nm. The optical measurements indicated that
PbxCd1-xSe films have direct optical energy gap. The value of the
energy gap decreases with the increase of Pb content from 1.78 eV to
1.49 eV.
This study aims to prepare Cadmium Sulphide (CdS) thin films using thermal Chemical Spray Pyrolysis (CSP) on glass of different temperatures substrate from cadmium nitrate solution. Constant thickness was (430 ± 20 nm) and the effect of substrate temperature on the optical properties of prepared thin films.
Optical properties have been studied from transmittance and absorbance spectral within wavelengths range (360 - 900 nm). The results show that all the prepared films have a direct electron transitions and optical energy gap between (2.31-2.44 eV). They also show that the transmittance and optical energy gap of films prepared from nitrate solution increase with increasing of substrate temperature, then transmittance start do
... Show MoreThin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.
The present work focuses on the changing of the structural characteristics of the grown materials through different material characterization methods. Semiconductor CdSxSe 1-x nano crystallines have been synthesized by chemical vapor depostion. (X- ray Diffraction; XRD), (Field Emission Scanning Electron Microscopy; FESEM), measured the characterization of Semiconductor CdSxSe1-x nano crystallines. The optical properties of semiconductor CdSxSe1-x nanocrystallines have been studied by the photoluminescence (PL) (He-Cd pulsed ultraviolet laser at 325nm excitation wavelength) at room temperature. The results showed the change rule of photoluminsence peak at different S
... Show More
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |