Cutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and Ag NPs. Serially concentrations of Ag NPs were used under two conditions during and following macrophages exposure to L. tropica. MTT assay was used to determine the cytotoxicity of Ag NPs on L. tropica amastigotes during infection of macrophages in vitro. The results showed that by increasing the Ag NPs concentrations, the viability percentage of L. tropica amastigotes decreased and reached to 21.7 ± 0.64 % during infection compared with the control. The 50% inhibitory concentration of Ag NPs on amastigotes was 2.048µg/ml during infection. Moreover, post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to L. tropica. It have shown that untreated macrophages released low levels of NO while in the presence of Ag NPs, macrophages were activated to produce higher levels of NO under all experimental conditions. On the other hand, macrophages were capable of controlling cytotoxicity and decreasing LDH levels during phagocytosis of L. tropica amastiogotes. Taking together, these findings suggest that Ag NPs can enhance macrophages NO production which provides a method for the identification of Ag NPs ligands with microbicidal and anti-cytotoxic properties against L. tropica pathogens.
This paper aims at exploring the impact of the Iraq-Iran war in the poetry of Adnan Al-Sayegh. Al-Sayegh participation in this war makes him a first hand witness to the atrocities of the trenches and fight in the first lines. This war did not only change his life and world view for good, it changes the nature of his poetry as well. As aresult, war becomes a central issue not only in the poetry Al-Sayegh wrote in the 1980s and 1990s Iraq, but also in the exile.
Key Words: War, Al-Sayegh, Poetry.
A crucial area of research in nanotechnology is the formation of environmentally benign nanoparticles. Both unicellular and multicellular play an important role in synthesis nanoparticles through the production of inorganic materials either intracellularly or extracellularly. The agents (pigments, siderophores, cell extracted metabolites and reducing compounds) were used to prepare silver nanparticles with different sizes and shapes. The color variations (dark yellow, slightly dark yellow and golden yellow) arising from changes in the composition, size, and shape of nanoparticles, surrounding medium can be monitored using UV-visible spectrophotometer. These effects are due to the phenomena called surface plasmon resonance. The silver nanopa
... Show MorePowder of silver nanoparticles was prepared by Sol - Gel method successfully using silver nitrate , (AgNO3) gesture is added to sodium citrate (C6H5O7Na3) as a reducing agent and by using Magnetic Stirrer to mix the solutions and heated then using centrifuge machine to separate the silver nanoparticles from solution .It is then dried in an oven at a temperature 40oC for 24 hours. Structure characteristics was studied , the synthetic silver powder was prepared through the use of an (XRD). Results showed the composition of silver nanoparticles is a (fcc) and a constant lattice (4.086 ± 0.006 Å) by comparing it with standard tables (JCPDS) which is found perfectly matched to file with a number 04-0783, which
... Show MoreNon-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important rol
... Show MoreNon-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important role in d
... Show MoreBackground: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa
... Show MoreIn the present study, silver nanoparticles (AgNPs) were prepared using an eco-friendly method synthesized in a single step biosynthetic using leaves aqueous extract of Piper nigrum, Ziziphus spina-christi, and Eucalyptus globulus act as a reducing and capping agents, as a function of volume ratio of aqueous extract(100ppm) to AgNO3 (0.001M), (1: 10, 2: 10, 3: 10). The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AgNPs showed surface Plasmon resonance centered at 443, 440, and 441 nm for sample prepared using extract Piper nigrum, Ziziphus spina-christi, and Eucalyptus respectively. The XRD pattern showed that the strong intense peaks
This study aimed to identify the alterations of liver in the quail (Coturnix coturnix) exposed by nanosilver particles.45 quail (females) were collected from agriculture research center in Abu-Ghraib, divided into (6) groups including: T1(12 quails were exposed to 4ppm), T2 (12 quails were exposed to 8ppm) and T3 (12 quails were exposed to 12ppm) of silver nanoparticles solution for 60 days. As well as three groups for control (3 females for each). Birds were dissected to isolate livers for histological preperations after fixation with Bouin's fluid, Routine stains Hematoxyline and eosin were used. Histological study showed that the structure of liver in a control groups consist of hepatocytes arranged radially cords around the central vein
... Show MoreInfluence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.