Cutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and Ag NPs. Serially concentrations of Ag NPs were used under two conditions during and following macrophages exposure to L. tropica. MTT assay was used to determine the cytotoxicity of Ag NPs on L. tropica amastigotes during infection of macrophages in vitro. The results showed that by increasing the Ag NPs concentrations, the viability percentage of L. tropica amastigotes decreased and reached to 21.7 ± 0.64 % during infection compared with the control. The 50% inhibitory concentration of Ag NPs on amastigotes was 2.048µg/ml during infection. Moreover, post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to L. tropica. It have shown that untreated macrophages released low levels of NO while in the presence of Ag NPs, macrophages were activated to produce higher levels of NO under all experimental conditions. On the other hand, macrophages were capable of controlling cytotoxicity and decreasing LDH levels during phagocytosis of L. tropica amastiogotes. Taking together, these findings suggest that Ag NPs can enhance macrophages NO production which provides a method for the identification of Ag NPs ligands with microbicidal and anti-cytotoxic properties against L. tropica pathogens.
The aim of this paper is to present a method for solving of system of first order initial value problems of ordinary differential equation by a semi-analytic technique with constructing polynomial solutions for decreasing dangers of lead. The original problem is concerned using two-point osculatory interpolation with the fit equals numbers of derivatives at the end points of an interval [0 , 1].
In this paper we present the first ever measured experimental electron momentum density of Cu2Sb at an intermediate resolution (0.6 a.u.) using 59.54 keV 241Am Compton spectrometer. The measurements are compared with the theoretical Compton profiles using density function theory (DFT) within a linear combination of an atomic orbitals (LCAO) method. In DFT calculation, Perdew-Burke-Ernzerhof (PBE) scheme is employed to treat correlation whereas exchange is included by following the Becke scheme. It is seen that various approximations within LCAO-DFT show relatively better agreement with the experimental Compton data. Ionic model calculations for a number of configurations (Cu+x/2)2(Sb-x) (0.0≤x≤2.0) are also performed utilizing free a
... Show MoreThe new sustainable development goals set by the UN include a goal of making cities inclusive, safe, sustainable, and resilient. Cities are growing at huge rates, and conditions of deteriorating QOL̛s are increasing in the form of poor access to services, and slums are remarkable, especially in the cities of the Middle East; hence, the research problem can arise from a lack of knowledge regarding the in determination of a way to assess the resilience of cities to develop mechanisms that will improve the quality of urban life. In this study, a tool called CRF has been applied for the assessment of the city's resilience principles of health and quality of life, economics and social, infrastructure and environmental systems, and the principle
... Show MoreThe agriculture around the world faced many difficulties and the important was to reduce inputs of chemical fertilizers and pesticides and increase the total yield specially with the continuous grow of populations numbers at the world expected to reach more than 9 billion by 2050. In other hand there are other problems which make the challenges bigger such as wars, biotic and abiotic stress, and diseases. The scientists tried to find solutions by using Nano-fertilization which consider a modern way to quickly grow up the yield and decrease use the chemicals. The use of nanotechnology may be destructive on human and the environment due to fast accumulation in the tissues of alive bodie
Gypseous soils represented one of the most complex salty soils that faced the geotechnical engineers. Structures that built on gypsum soil will undergo unexpected distortions that will eventually contribute to catastrophic failure. The purpose of this article is to understand the durability of gypsum soil against wetting drying cycles after improvement with polyurethane polymer especially investigate the effect of the wetting-drying cycle on collapsibility. The soil was brought from Sawa lake in AL-Muthanna Governorate in Iraq, with gypsum content 65.5%, A set of Odometer tests were performed to determine the collapsibility potential (CP) for treated and untreated gypsum soil. The result shows that adding a different per
... Show MoreTwosimple, sensitive,accurate, and precise spectrophotometric methods have been developed for the determination of chlorpromazine – HCl in pure form and pharmaceutical formulation. The first method involved treatment of cited drug with a measured excess of permanganate in acid medium and the unreacted oxidant was measured at 525 nm. The second method involves the reaction of the drug with potassium permanganate in the presence of sodium hydroxide to produce a bluish – green colored manganite which is measurable at 610nm. All the experimental variables affecting the development of the manganite ions were investigatedand conditions were optimized. Working linearity ranges were 5-45 µg.mL-1an
... Show More