Cutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and Ag NPs. Serially concentrations of Ag NPs were used under two conditions during and following macrophages exposure to L. tropica. MTT assay was used to determine the cytotoxicity of Ag NPs on L. tropica amastigotes during infection of macrophages in vitro. The results showed that by increasing the Ag NPs concentrations, the viability percentage of L. tropica amastigotes decreased and reached to 21.7 ± 0.64 % during infection compared with the control. The 50% inhibitory concentration of Ag NPs on amastigotes was 2.048µg/ml during infection. Moreover, post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to L. tropica. It have shown that untreated macrophages released low levels of NO while in the presence of Ag NPs, macrophages were activated to produce higher levels of NO under all experimental conditions. On the other hand, macrophages were capable of controlling cytotoxicity and decreasing LDH levels during phagocytosis of L. tropica amastiogotes. Taking together, these findings suggest that Ag NPs can enhance macrophages NO production which provides a method for the identification of Ag NPs ligands with microbicidal and anti-cytotoxic properties against L. tropica pathogens.
In the present work the Buildup factor for gamma rays were studied in shields from epoxy reinforced by lead powder and by aluminum powder, for NaI(Tl) scintillation detector size ( ×? ), using two radioactive sources (Co-60 and Cs-137). The shields which are used (epoxy reinforced by lead powder with concentration (10-60)% and epoxy reinforced by aluminum powder with concentration (10-50)% by thick (6mm) and epoxy reinforced by lead powder with concentration (50%) with thick (2,4,6,8,10)mm. The experimental results show that: The linear absorption factor and Buildup factor increase with increase the concentration for the powders which used in reinforcement and high for aluminum powder than the lead powder and decrease with inc
... Show MoreContinuous turbidimetric analysis (CTA) for a distinctive analytical application by employing a homemade analyser (NAG Dual & Solo 0-180°) which contained two consecutive detection zones (measuring cells 1 & 2) is described. The analyser works based on light-emitting diodes as a light source and a set of solar cells as a light detector for turbidity measurements without needing further fibres or lenses. Formation of a turbid precipitated product with yellow colour due to the reaction between the warfarin and the precipitation reagent (Potassium dichromate) is what the developed method is based on. The CTA method was applied to determine the warfarin in pure form and pharmaceu
Acute Respiratory Distress Syndrome (ARDS) causes up to 40% mortality in humans and is difficult to treat. ARDS is also one of the major triggers of mortality associated with coronavirus-induced disease (COVID-19). We used a mouse model of ARDS induced by Staphylococcal enterotoxin B (SEB), which triggers 100% mortality, to investigate the mechanisms through which Δ9-tetrahydrocannabinol (THC) attenuates ARDS. SEB was used to trigger ARDS in C3H mice. These mice were treated with THC and analyzed for survival, ARDS, cytokine storm, and metabolome. Additionally, cells isolated from the lungs were used to perform single-cell RNA sequencing and transcriptome analysis. A database analysis of human COVID-19 patients was also performed t
... Show MoreIn this work, two different laser dye solutions were used to host highly-pure silicon nitride nanoparticles as scattering centers to fabricate random gain media. The laser dye was dissolved in three different solvents (ethanol, methanol and acetone) and the final results were obtained for methanol only. The silicon nitride nanoparticles were synthesized by dc reactive magnetron sputtering technique with average particle size of 35 nm. The random gain medium was made as a solid rod with high spectral efficiency and low production cost. Optical emission with narrow linewidth was detected at 532-534 nm as 9 mg of silicon nitride nanoparticles were added to the 10 -5 M dye solution. The FWHM of 0.3 and 3.52 nm was determined for Rhodamine B and
... Show MoreMetal nanoparticles can serve as an efficient nano-heat source with confinement photothermal effects. Thermo-plasmonic technology allows researchers to control the temperature at a nanoscale due to the possibility of precise light propagation. The response of opto-thermal generation of single gold-silica core-shell nanoparticle immersed in water and Poly-vinylpyrrolidone surrounding media is theoretically investigated. Two lasers (CW and fs pulses) at the plasmonic resonance (532 nm) are utilized. For this purpose, finite element method is used via COMSOL multiphysics to find a numerical computation of absorption cross section for the proposed core –shell NP in different media. Thermo-plasmonic response for both lasers is studied. The
... Show MoreFormation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu
... Show MoreThis research deals with increasing the hardening and insulating the petroleum pipes against the conditions and erosion of different environments. So, basic material of epoxy has been mixed with Ceramic Nano Zirconia reinforcement material 35 nm with the percentages (0,1,2,3,4,5) %, whereas the paint basis of broken petroleum pipes was used to paint on it, then it was cut into dimensions (2 cm. × 2 cm.) and 0.3cm high. After the paint and percentages are completed, the samples were immersed into the paint. Then, the micro-hardness was checked according to Vickers method and thermal inspection of paint, which contained (Thermal conduction, thermal flux and Thermal diffusivity), the density of the painted samples was calculate
... Show MoreThe size and the concentration of the gold nanoparticles (GNPs)
synthesized in double distilled deionized water (DDDW) have been
found to be affected by the laser energy and the number of pulses.
The absorption spectra of the nanoparticles DDDW, and the
surface plasmon resonance (SPR) peaks were measured, and found to
be located between (509 and 524)nm using the UV- Vis
spectrophotometer. SPR calculations, images of transmission
electron microscope, and dynamic light scattering (DLS) method
were used to determine the size of GNPs, which found to be ranged
between (3.5 and 27) nm. The concentrations of GNPs in colloidal
solutions found to be ranged between (37 and 142) ppm, and
measured by atomic absorptio