In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods is produced. Finally, for more explanation, an algorithm is proposed and applied for testing examples to illustrate the effectiveness of the new technique.
Double hydrothermal method was used to prepare nano gamma alumina using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, CTAB (cetyltrimethylammonium bromide) as surfactant, and variable acids: weak acids like; citric, and acitic acids, and strong acids like; hydrochloric and nitric acids as a bridge between aluminum salts and surfactant. Different crystallization times 12, 24, 48, and 72 hrs were applied. All the batches were prepared at pH equals to 9. XRD diffraction technique was used to investigate the crystalline nano gamma alumina pure from surfactant. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the average p
... Show MoreBackground: The skull base and the hard palate contain many anatomical features that make them rich in information which are useful in sex differentiation; in addition to that they have the ability to resist the hardest environmental conditions that support them in making sex differentiation. Three dimensional computed tomographic techniques has important role in differentiation between sex since it offers images with very accurate data and details of all anatomical structures with high resolution. This study was made to study sex variations among Iraqi sample by craniometric linear measurements of the hard palate and the skull base using 3D reconstructed Computed Tomographic scan. Materials and methods: This study composed of 100 Iraqi su
... Show MoreThe Boltzmann equation has been solved using (EEDF) package for a pure sulfur hexafluoride (SF6) gas and its mixtures with buffer Helium (He) gas to study the electron energy distribution function EEDF and then the corresponding transport coefficients for various ratios of SF6 and the mixtures. The calculations are graphically represented and discussed for the sake of comparison between the various mixtures. It is found that the various SF6 – He content mixtures have a considerable effect on EEDF and the transport coefficients of the mixtures
Chemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemi
... Show MoreThe purpose of this study was to investigate the effect of a Cognitive- Behavioral Training Program in reducing Problems Solving among a sample of education university College Students, the study sample consisted of (50) students were randomly assigned to two groups: experimental, and control; (25) students per group, the results of (ANOVA) revealed that there were significant differences at (p < 0.05) between experimental and control group in Problems Solving level, while there were significant differences between both groups in achievement. The researchers recommended further studies on the other variables which after training students on the method of solving problems and techniques to reduce stress.<
... Show MoreThe follower of the art of Arabic calligraphy accurately identifies three prominent dimensions that have framed the dimensions of this art, the functional dimension and the aesthetic dimension, the last of which is the expressive dimension, as it is an art that does not exhaust its aesthetic and indicative purposes because of its possibilities and characteristics that help it to form with any entity designed by calligrapher, with the expressive dimension of the most important of those The dimensions that can be studied within multiple variables, the most important of which are the significance of the text, the spatial and formal organization of the calligraphic functions and the power of the idea from which the calligraphic formation eme
... Show MoreMany numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.