In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods is produced. Finally, for more explanation, an algorithm is proposed and applied for testing examples to illustrate the effectiveness of the new technique.
Abstract
Objective of this research focused on testing the impact of internal corporate governance instruments in the management of working capital and the reflection of each of them on the Firm performance. For this purpose, four main hypotheses was formulated, the first, pointed out its results to a significant effect for each of corporate major shareholders ownership and Board of Directors size on the net working capital and their association with a positive relation. The second, explained a significant effect of net working capital on the economic value added, and their link inverse relationship, while the third, explored a significant effect for each of the corporate major shareholders ownershi
... Show MoreIn this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria