In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods is produced. Finally, for more explanation, an algorithm is proposed and applied for testing examples to illustrate the effectiveness of the new technique.
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the met
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
The study investigated the behaviour of asphalt concrete mixes for aggregate gradations, according to the Iraqi specification using the Bailey method designed by an Excel spreadsheet. In mixing aggregates with varying gradations (coarse and fine aggregate), The Bailey method is a systematic methodology that offers aggregate interlocking as the backbone of the framework and a controlled gradation to complete the blends. Six types of gradation are used according to the bailey method considered in this study. Two-course prepared Asphalt Concrete Wearing and Asphalt Concrete binder, the Nominal Maximum Aggregate Sizes (NMAS) of the mixtures are 19 and 12.5 mm, respectively. The total number of specimens was 240 for both layers (15 samp
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreThe study aims to find out the effectiveness of using the Google classroom educational platform in teaching mathematics curricula from the viewpoint of teachers in the Governorate of Al Dhahirah, Sultanate of Oman. The researcher adopted the descriptive-analytical approach. To collect the needed data, a questionnaire of two dimensions was used. It includes (13) items to measure the effectiveness of using the Google classroom in teaching mathematics curricula from the teacher's point of view and includes (10) items to measure the difficulties of using the Google classroom in teaching mathematics curricula from the teachers' point of view. These tools were applied to (32) male and (31) female as the study sample. They represent mathematics
... Show MoreThis study was conducted in order to statement the effect of ginger (Zingiber officinale) extracts in reducing the presence of the bacterium Salmonella typhimurium in some foods products.
Qualitative disclosures effective chemical compounds (alkaloids, flavonoids, phenols, tannins, terpenes) showed that the extracts of ginger an effective compounds as follows: oil extract and fresh juice> aqueous extract warm> aqueous extract cold. And studied the impact extract of fresh ginger juice, hot water ,cold water and oil rates extracts (1,2,3)% in bacteria test has shown that all s of extracts clear impact inhibition has oily extract of ginger recorded the highest value to inhibition zone reaching 35 mm when the concentration of 3%, f
Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show More