Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of cigarettes according to the US Federal Trade Commission.
All major organs may be impacted by the connective disease systemic lupus erythematosus, a separate risk factor for coronary artery disease (CAD). Adhesion molecules like intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) can detect endothelial damage and dysfunction, which appear to play a crucial role. This study investigated whether people with SLE had elevated subclinical and clinical atherosclerosis risk factors. Traditional CAD risk factors such as smoking, hypertension, and hyperlipidemia cannot entirely explain this elevation. It is thought that immunological dysfunction also increases CAD risk in SLE patients. The study aimed to assess early endothelial changes in SLE Iraqi female patients w
... Show MoreArtificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreBackground Bilateral cleft lip deformity is much more difficult to correct than unilateral cleft lip deformity. The complexity of the deformity and the sensitive relationships between the arrangement of the muscles and the characteristics of the external lip necessitate a comprehensive preoperative plan for management. The purpose of this study was to evaluate the repair of bilateral cleft lip using the Byrd modification of the traditional Millard and Manchester methods. A key component of this repair technique is focused on reconstruction of the central tubercle.
Methods Fourteen patients with mean age of 5.7 months presented with bilateral cleft lip deformity and were operated on using a mod
... Show MoreThe method of operational matrices is based on the Bernoulli and Shifted Legendre polynomials which is used to solve the Falkner-Skan equation. The nonlinear differential equation converting to a system of nonlinear equations is solved using Mathematica®12, and the approximate solutions are obtained. The efficiency of these methods was studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as increases. Moreover, the obtained approximate solutions are compared with the numerical solution obtained by the fourth-order Runge-Kutta method (RK4), which gives a good agreement.
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.