The main factors that make it possible to get the corrosion of reinforcing steel in concrete are chloride ions and the absorption of carbon dioxide from the environment, and each of them works with a mechanism which destroys the stable immunity of rebar in the concrete. In this work the effect of carbon dioxide content in the artificial concrete solution on the corrosion behavior of carbon steel reinforcing bar (CSRB) was studied, potentiostatically using CO2 stream gas at 6 level of concentrations; 0.03 to 2.0 weight percent, and the effect of rising electrolyte temperature was also followed in the range 20 to 50ᴼ C. Tafel plots and cyclic polarization procedures were obeyed to investigate the corrosion parameters and pitting susceptibility respectively. The change in the microstructure and morphology of the CSRB after polarization in the simulate concrete solution was studied using optical and atomic force microscopes. The results show that the corrosion rate of the CSRB in artificial concrete greatly increases with the existence of CO2 gas and highly depends on its concentration in the range 0.03 to 2.0% .No sign for pitting corrosion is recorded at all CO2 concentrations and the general corrosion is the main problem in the conditions under consideration.
This paper presents experimental results regarding the behaviours of eight simply supported partially prestressed concrete beams with internally unbonded tendons, focusing particularly on the effect of three different variables: concrete compressive strength,
The corrosion behavior of carbon steel at different temperatures 100,120,140 and 160 Cͦ under different pressures 7,10 and 13 bar in pure distilled water and after adding three types of oxygen scavengers Hydroquinone, Ascorbic acid and Monoethanolamine in different concentrations 40,60 and 80 ppm has been investigated using weight loss method. The carbon steel specimens were immersed in water containing 8.2 ppm dissolved oxygen (DO) by using autoclave. It was found that corrosion behavior of carbon steel was greatly influenced by temperature with high pressure. The corrosion rate decreases, when adding any one of oxygen scavengers. The best results were obtained at a concentration of 80 ppm of each scavenger. It was observed that
... Show MoreRotating cylinder electrode (RCE) is used . in weight loss technique , the salinity is 200000 p.p.m, temperatures are (30,5060,7080Co) . the velocity of (RCE) are (500,1500,3000 r.p.m). the water cut (30% , 50%). The corrosion rate of carbon steel increase with increasing rotating cylinder velocity. In single phase flow, an increase im rotational velocity from 500 to 1500 r.p.m, the corrosion rate increase from 6.88258 mm/y to 10.11563 mm/y respectively.
In multiphase flow, an increase in (RCE) from 500 to 1500 r.p.m leads to increase in corrosion rate from 0.786153 to 0.910327 mm/y respectively. Increasing brine concentration leads to increase in corrosion rate at water cut 30%.
Electrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreAbstract
This work involves the manufacturing of MAX phase materials include V2AlC and Cr2AlC using powder metallurgy as a new class of materials which characterized by regular crystals in lattice. Corrosion behavior of these materials was investigated by Potentiostat to estimate corrosion resistance and compared with the most resistant material represented by SS 316L. The experiments were carried out in 0.01N of NaOH solution at four temperatures in the range of 30–60oC. Polarization resistance values which calculated by Stern-Geary equation indicated that the MAX phase materials more resistant than SS 316L. Also cyclic polarization tests confirme
... Show MoreOne of the biggest problems facing many industries particularly oil, is the problem of corrosion, where the metal parts under the influence of the vital factors are eroded during use and storage, therefore, to lift the metal’s ability and to protect it against corrosion, corrosion inhibitors are used. For the first time in this research, polymers which contain sulfur - heterocyclic ring with a thiadiazole base were made. Anti- corrosion polymers were made on two stages, in the first stage, thiadiazole was made from hydrazine hydrate reaction to carbon disulfide, afterwards the first product was reacted with an excess of hydrazine. In the second stage, polymers were prepared by the r
Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue
... Show MoreBackground: The Covid-19 pandemic changed the world; its most important achievement for education was changing the approach from traditional to virtual education. The present study aimed to investigate the role of virtual education networks on mental health of students including personality, beliefs, scientific, and cultural dimensions, in selected countries.Methods: This was an exploratory and applied study. According to the phenomenology strategy, theoretical saturation occurred after 24 semi-structured and targeted qualitative interviews with teachers from Iran, Iraq, Syria and Lebanon, in 2023. Quantitative data was collected through a researcher-made online questionnaire with 423 participants. Teachers with at least a Bachelor’s degr
... Show MoreSlurry infiltrated fibrous concrete (SIFCON) is a modern type of fibre reinforced concrete (FRC). It has unique properties; SIFCON is superior in compressive strength, flexural strength, tensile strength, impact resistance, energy absorption and ductility. Because of this superiority in these characteristics, SIFCON was qualified for applications of special structures, which require resisting sudden dynamic loads such as explosions and earthquakes. The main aim of this investigation is to determine the effect of fibre type on the apparent density of SIFCON and on performance under impact load. In this investigation, hook-end steel fibre and polyolefin fibre were used. Purely once and