Pseudomonas aeruginosa has variety of virulence factors that contribute to its pathogenicity. Therefore, rapid detection with high accuracy and specificity is very important in the control of this pathogenic bacterium. To evaluate the accuracy and specificity of Polymerase Chain Reaction (PCR) assay, ETA and gyrB genes were targeted to detect pathogenic strains of P. aeruginosa. Seventy swab samples were taken from patients with infected wounds and burns in two hospitals in Erbil and Koya cities in Iraq. The isolates were traditionally identified using phenotypic methods, and DNA was extracted from the positive samples, to apply PCR using the species specific primers targeting ETA, the gene encoding for exotoxin A, and gyrB gene. The results of this study indicate that 100% of P. aeruginosa isolates harbored the gyrB gene, whereas 74% of these isolates harbored ETA gene. However, the specificity of PCR for detection of P. aeruginosa based on the both genes was 100%, since no amplified product obtained using DNA extracted from other bacterial species. Hence by considering the importance of rapid detection of this bacterium due to the presence of problems in biochemical methods, PCR targeting multiple virulence genes is suggested in identification of pathogenic strains of P. aeruginosa isolated from some infections which should speed diagnosis of an antimicrobial therapy.
Background: Nursing interventions tailored to the smoking triggers in patients with non-communicable chronic diseases are essential. However, these interventions are scant due to the nature of factors associated with smoking cessation and the poor understanding of the effect of nurse-led intervention in Iraq.Purpose: This study aimed to determine the dominant smoking triggers and examine the effects of a tailored nursing intervention on smoking behavior in patients with non-communicable chronic diseases.Methods: Convenience samples of 128 patients with non-communicable chronic diseases, male and female patients, who were 18-70 years old, were recruited in this quasi-experimental, randomized comparative trial in the outpatient clinic
... Show MoreNatural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show MoreECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreSpecialized Escherichia coli (E. coli) isolates, called uropathogenic E. coli (UPEC), cause most of urinary tract infections (UITs). Once bacteria reached the urinary tract of the host, they have to adhere to the host cell for the colonization. For this purpose, bacteria have different structures including fimbrial adhesins. Most of the UPECs contain type 1 fimbriae encoded by fim operon (fimB, E, A, I, C, D, F, G, H) which is responsible for the adhesive ability in these isolates. Ninety-four isolates of UPEC were obtained from UTI patients in Baghdad hospitals and their diagnosis were confirmed by the PCR method using 16srDNA as a housekeeping gene. The UPEC isolates were tested for their ability of adherence to the urothelial cells obtai
... Show MoreA simple, accurate, precise, rapid, economical and a high sensitive spectrophotometric method has been developed for the determination of tadalafil in pharmaceutical preparations and industrial wastewater samples, which shows a maximum absorbance at 204 nm in 1:1 ethanol-water. Beer's law was obeyed in the range of 1-7?g/ mL ,with molar absorptivity and Sandell ? s sensitivity of 0.783x105l/mol.cm and 4.97 ng/cm2respectively, relative standard deviation of the method was less than 1.7%, and accuracy (average recovery %) was 100 ± 0. 13. The limits of detection and quantitation are 0.18 and 0.54 µg .ml-1, respectively. The method was successfully applied to the determination of tadalafil in some pharmaceutical formulations
... Show More