Preferred Language
Articles
/
bsj-3389
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal method in solving these problems.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 14 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Generalized Spline Approach For Solving System of Linear Fractional Volterra Integro-Differential Equations

    In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of  linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Numerical Solution of Linear Fractional Differential Equation with Delay Through Finite Difference Method

This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results  are shown through numerical examples.

 

Scopus (5)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 26 2020
Journal Name
Iraqi Journal Of Science
The Numerical Approximation of the Bioheat Equation of Space-Fractional Type Using Shifted Fractional Legendre Polynomials

The aim of this paper is to employ the fractional shifted Legendre polynomials (FSLPs) in the matrix form to approximate the fractional derivatives and find the numerical solutions of the one-dimensional space-fractional bioheat equation (SFBHE). The Caputo formula was utilized to approximate the fractional derivative. The proposed methodology applied for two examples showed its usefulness and efficiency. The numerical results showed that the utilized technique is very efficacious with high accuracy and good convergence.

Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Detour Polynomials of Generalized Vertex Identified of Graphs

The Detour distance is one of the most common distance types used in chemistry and computer networks today. Therefore, in this paper, the detour polynomials and detour indices of vertices identified of n-graphs which are connected to themselves and separated from each other with respect to the vertices for n≥3 will be obtained. Also, polynomials detour and detour indices will be found for another graphs which have important applications in Chemistry.

 

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
The Approximation of Weighted Hölder Functions by Fourier-Jacobi Polynomials to the Singular Sturm-Liouville Operator

      In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.

Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
International Journal Of Computer Mathematics
Crossref (11)
Crossref
View Publication
Publication Date
Fri Apr 01 2022
Journal Name
Baghdad Science Journal
Numerical Solutions of Two-Dimensional Vorticity Transport Equation Using Crank-Nicolson Method

This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived.  In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
Approximate Solutions for Systems of Volterra Integro-differential Equations Using Laplace –Adomian Method

Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.

Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Engineering Analysis With Boundary Elements
Crossref (9)
Crossref
View Publication
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Some K-Banhatti Polynomials of First Dominating David Derived Networks

Chemical compounds, characteristics, and molecular structures are inevitably connected. Topological indices are numerical values connected with chemical molecular graphs that contribute to understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this study, we have obtained some topological properties of the first dominating David derived (DDD) networks and computed several K-Banhatti polynomials of the first type of DDD.

Scopus Crossref
View Publication Preview PDF