In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal method in solving these problems.
This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
The research aims to recognize the impact of the training program based on integrating future thinking skills and classroom interaction patterns for mathematics teachers and providing their students with creative solution skills. To achieve the goal of the research, the following hypothesis was formulated: There is no statistically significant difference at the level (0.05) between the mean scores of students of mathematics teachers whose teachers trained according to the proposed training program (the experimental group) and whose teachers were not trained according to the proposed training program (the control group) in Pre-post creative solution skills test. Research sample is consisted of (31) teachers and schools were distribut
... Show MoreThe Hartley transform generalizes to the fractional Hartley transform (FRHT) which gives various uses in different fields of image encryption. Unfortunately, the available literature of fractional Hartley transform is unable to provide its inversion theorem. So accordingly original function cannot retrieve directly, which restrict its applications. The intension of this paper is to propose inversion theorem of fractional Hartley transform to overcome this drawback. Moreover, some properties of fractional Hartley transform are discussed in this paper.
Stumpff functions are an infinite series that depends on the value of z. This value results from multiplying the reciprocal semi-major axis with a universal anomaly. The purpose from those functions is to calculate the variation of the universal parameter (variable) using Kepler's equation for different orbits. In this paper, each range for the reciprocal of the semi-major axis, universal anomaly, and z is calculated in order to study the behavior of Stumpff functions C(z) and S(z). The results showed that when z grew, Stumpff functions for hyperbola, parabola, and elliptical orbits were also growing. They intersected and had a tendency towards zero for both hyperbola and parabola orbits, but for elliptical orbits, Stumpff functions
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show More