This paper deals with defining Burr-XII, and how to obtain its p.d.f., and CDF, since this distribution is one of failure distribution which is compound distribution from two failure models which are Gamma model and weibull model. Some equipment may have many important parts and the probability distributions representing which may be of different types, so found that Burr by its different compound formulas is the best model to be studied, and estimated its parameter to compute the mean time to failure rate. Here Burr-XII rather than other models is consider because it is used to model a wide variety of phenomena including crop prices, household income, option market price distributions, risk and travel time. It has two shape-parameters (α, r) and one scale parameter (λ) which is considered known. So, this paper defines the p.d.f. and CDF and derives its Moments formula about origin, and also derive the Moments estimators of two shapes parameters (α, r) in addition to maximum likelihood estimators as well as percentile estimators, the scale parameter (λ) is not estimated (as it is considered known). The comparison between three methods is done through simulation procedure taking different sample size (n=30, 60, 90) and different sets of initial values for (α, r, λ).It is observed that the moment estimators are the best estimator with percentage (46%) ,(42%) respectively compared with other estimators.
PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural
... Show MoreNimodipine (NMD) is a dihydropyridine calcium channel blocker useful for the prevention and treatment of delayed ischemic effects. It belongs to class ? drugs, which is characterized by low solubility and high permeability. This research aimed to prepare Nimodipine nanoparticles (NMD NPs) for the enhancement of solubility and dissolution rate. The formulation of nanoparticles was done by the solvent anti-solvent technique using either magnetic stirrer or bath sonicator for maintaining the motion of the antisolvent phase. Five different stabilizers were used to prepare NMD NPs( TPGS, Soluplus®, HPMC E5, PVP K90, and poloxamer 407). The selected formula F2, in which Soluplus
has been utilized as a stabilizer, has a par
... Show MoreThe ground state charge, neutron, proton and matter densities, the associated nuclear radii and the binding energy per nucleon of 8B, 17Ne, 23Al and 27P halo nuclei have been investigated using the Skyrme–Hartree–Fock (SHF) model with the new SKxs25 parameters. According to the calculated results, it is found that the SHF model with these Skyrme parameters provides a good description on the nuclear structure of above proton-rich halo nuclei. The elastic charge form factors of 8B and 17Ne halo nuclei and those of their stable isotopes 10B and 20Ne are calculated using plane-wave Born approximation with the charge density distributions obtained by SHF model to investigate the effect of the extended charge distributions of proton-rich nucl
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More