In this paper, several conditions are put in order to compose the sequence of partial sums , and of the fractional operators of analytic univalent functions , and of bounded turning which are bounded turning too.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solution
... Show MoreMost of the Weibull models studied in the literature were appropriate for modelling a continuous random variable which assumes the variable takes on real values over the interval [0,∞]. One of the new studies in statistics is when the variables take on discrete values. The idea was first introduced by Nakagawa and Osaki, as they introduced discrete Weibull distribution with two shape parameters q and β where 0 < q < 1 and b > 0. Weibull models for modelling discrete random variables assume only non-negative integer values. Such models are useful for modelling for example; the number of cycles to failure when components are subjected to cyclical loading. Discrete Weibull models can be obta
... Show MoreCopulas are very efficient functions in the field of statistics and specially in statistical inference. They are fundamental tools in the study of dependence structures and deriving their properties. These reasons motivated us to examine and show various types of copula functions and their families. Also, we separately explain each method that is used to construct each copula in detail with different examples. There are various outcomes that show the copulas and their densities with respect to the joint distribution functions. The aim is to make copulas available to new researchers and readers who are interested in the modern phenomenon of statistical inferences.
In this paper, we obtain a complete characterization for the norm and the minimum norm attainment sets of bounded linear operators on a real Banach spaces at a vector in the unit sphere, using approximate ðœ–-Birkhoff-James orthogonality techniques. As an application of the results, we obtained a useful characterization of
bounded linear operators on a real Banach spaces. Also, using approximate ðœ–-Birkhoff -James orthogonality proved that a Banach space is a reflexive if and only if for any closed hyperspace of , there exists a rank one linear operator such that , for some vectors in and such that 𜖠.Mathematics subject classification (2010): 46B20, 46B04, 47L05.
Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a local
... Show MoreThe Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimi
... Show MoreIt is noted in the title that the paper studies the viewpoint in the novel The Dog and the Long Night by the Iranian novelist Shahranoush Parsi Pour and in the novel Alibaba's Sad Night by the Iraqi novelist Abdulkhaliq Ar-Rikabi. Both are well known novelists, and about whose stories and novels many critical books, MA theses, and Ph.D. dissertations have been written. Also, some of their literary works have won prizes. Here, the researcher shed light on the concept of viewpoint, its types, and its importance in novels in general. This was done along with tackling the two viewpoints in both novels, where similarities and differences were identified. For this end, the researcher has adopted the analytic-descriptive appro
... Show MoreIn this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed meth
... Show MoreThis article is devoted to presenting results on invariant approximations over a non-star-shsped weakly compact subset of a complete modular space by introduced a new notion called S-star-shaped with center f: if be a mapping and , . Then the existence of common invariant best approximation is proved for Banach operator pair of mappings by combined the hypotheses with Opial’s condition or demi-closeness condition
In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t
... Show More