Preferred Language
Articles
/
bsj-3237
Enhancement of Hydrothermally Co3O4 Thin Films as H2S Gas Sensor by Loading Yttrium Element
...Show More Authors

The gas sensing properties of Co3O4 and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4 and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4 possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.

The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating temperatures. The resistance changes with exposure to the test gas. The results reveal that the Co3O4:10%Y possesses the highest sensitivity around 80% at a 100oC operating temperature when exposed to the reducing gas H2S with 0.8sec for both recovery and response times.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 15 2018
Journal Name
Scientific Reports
Tuning charge carrier transport and optical birefringence in liquid-crystalline thin films: A new design space for organic light-emitting diodes
...Show More Authors
Abstract<p>Liquid-crystalline organic semiconductors exhibit unique properties that make them highly interesting for organic optoelectronic applications. Their optical and electrical anisotropies and the possibility to control the alignment of the liquid-crystalline semiconductor allow not only to optimize charge carrier transport, but to tune the optical property of organic thin-film devices as well. In this study, the molecular orientation in a liquid-crystalline semiconductor film is tuned by a novel blading process as well as by different annealing protocols. The altered alignment is verified by cross-polarized optical microscopy and spectroscopic ellipsometry. It is shown that a change in alignment of the </p> ... Show More
View Publication
Scopus (31)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
STATIC PERFORMANCE CHARACTERISTICS OF VORTEX RATE SENSOR
...Show More Authors

The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Static Performance Characteristics Of Vortex Rate Sensor
...Show More Authors

The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 01 2018
Journal Name
Curtin University
Gas hydrates investigation: flow assurance for gas production and effects on hydrate-bearing sediments
...Show More Authors

This thesis was aimed to study gas hydrates in terms of their equilibrium conditions in bulk and their effects on sedimentary rocks. The hydrate equilibrium measurements for different gas mixtures containing CH4, CO2 and N2 were determined experimentally using the PVT sapphire cell equipment. We imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via μCT. Moreover, the effect of hydrate formation on the P-wave velocities of sandstone was investigated experimentally.

Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Performance of humidity sensor based on photonic crystal fiber interferometer
...Show More Authors

Photonic Crystal Fiber Interferometers (PCFIs) are greatly used
for sensing applications. This work presents the fabrication and
characterization of a relative humidity sensor based on Mach-
Zehnder Interferometer (MZI), which operates in reflection mode.
The humidity sensor operation based on the adsorption and
desorption of water vapour at the silica-air interface within the PCF.
The fabrication of this sensor is simple, it only includes splicing and
cleaving the PCF with SMF.PCF (LMA-10) with a certain length
spliced to SMF (Corning-28).
The spectrum of PCFI exhibits good sensitivity to humidity
variations. The PCFI response is observed for a range of humidity
values from (27% RH to 85% RH), the positi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Nov 08 2022
Journal Name
V. International Scientific Congress Of Pure, Applied And Technological Sciences
The effect of background vacuum pressure on the length of gas discharge plasma by using Aluminum electrodes
...Show More Authors

Length of plasma generated by dc gas discharge under different vacuum pressures was studied experimentally. The cylindrical discharge tube of length 2m was evacuated under vacuum pressure range (0.1-0.5) mbar at constant external working dc voltage 1500V. It was found that the plasma length (L) increased exponentially with increasing of background vacuum air pressure. Empirical equation has been obtained between plasma length and gas pressure by using Logistic model of curve fitting. As vacuum pressure increases the plasma length increases due to collisions, ionizations, and diffusions of electrons and ions.

Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fixation of Efficient Method for Separation and Analysis of Alkyl Al koxy Silan Compounds by Gas Chromatography
...Show More Authors

       Modification of gas chromatographic technique for the separation and determination of methyl ethoy silane compounds which were synthesized by the addition of absolute ethanol to methyl chlorosilane compounds have been elaborated experimentally.  The addition of absolute dry ethanol to methyl chlorosilane compounds in the presence of a dry stream of nitrogen gas led to sweep out the liberated HCl gas. This method was found to be the suitable method for the preparation of methyl ethoxy silane compounds. The optimum parameter selected after careful and precise studies was between 20 – 30 ml \ min to carrieir gas flow rate, while applied temperatures of detector and injection part were 250 Â

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 03 2017
Journal Name
Sci. Int.(lahore)
IMPROVING NO2 SENSITIVITY OF POROUS SILICON BY FUNCTIONALIZATION ITS SURFACE WITH COPPER AS CATALYST
...Show More Authors

In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p

... Show More
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Numerical Study of Heat Transfer Enhancement for a Flat Plate Solar Collector by Adding Metal Foam Blocks
...Show More Authors

Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Finite Element Analysis of Raft Foundation under Coupled Moment
...Show More Authors

Due to wind wave actions, ships impacts, high-speed vehicles and others resources of loading, structures such as high buildings rise bridge and electric transmission towers undergo significant coupled moment loads. In this study, the effect of increasing the value of coupled moment and increasing the rigidity of raft footing on the horizontal deflection by using 3-D finite element using ABAQUS program. The results showed that the increasing the coupled moment value leads to an increase in lateral deflection and increase in the rotational angle (α◦). The rotational angle increases from (0.014, 0.15 to 0.19) at coupled moment (120 kN.m), (0.29, 0.31 and 0.49) at coupled moment (240 kN.m) and (0.57, 0.63 and 1.03) at cou

... Show More
View Publication Preview PDF
Crossref (1)
Crossref