In this paper, we investigate the basic characteristics of "magnetron sputtering plasma" using the target V2O5. The "magnetron sputtering plasma" is produced using "radio frequency (RF)" power supply and Argon gas. The intensity of the light emission from atoms and radicals in the plasma measured by using "optical emission spectrophotometer", and the appeared peaks in all patterns match the standard lines from NIST database and employed are to estimate the plasma parameters, of computes electron temperature and the electrons density. The characteristics of V2O5 sputtering plasma at multiple discharge provisos are studied at the "radio frequency" (RF) power ranging from 75 - 150 Watt and gas pressure (0.03, 0.05 and 0.007) torr. One can observe that the intensity of the emission lines increases with increasing the sputtering power. We find that the electron temperature excess drastically from 0.95 eV to 1.11eV when the emptying gas pressure excess from 0.03 to 0.05 Torr. On other hand excess electron temperature from 0.9 to 1.01 eV with increasing sputtering power from 100 to 125 Watt, while the electron density decrease from 5.9×1014 to 4.5×1014 cm-3 with increasing sputtering power. and electron density decrease with increasing of pressure from 4.25×1014 to 2.80×1014 cm-3, But the electron density maximum values 5.9×1014 at pressure 0.03 Torr.
The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreBackground. Implant insertion in regions with poor bone quantity, such as the posterior maxilla, is potentially associated with an increased rate of implant failure. Calcium sulfate can be used as the coating material for commercially pure titanium (CpTi) and as the bone graft material around implants when bound to eggshell powder to enhance the bone quality and quantity of bone defect regions. This study performed a torque removal test to evaluate the effectiveness of eggshell powder as a bone substitute for filling bone defects around CpTi-coated implants coated with nanocrystalline calcium sulfate. Materials and Methods. Eighty screw implant designs were used in the tibiae of 20 white New Zealand rabbits. A total of uncoated 20 s
... Show More|
Natural convection in an annular space provided with metal foam fins attached to the inner cylinder is studied numerically. The metal foam fins made of copper were inserted in different axial sections with three fins in each section. The temperature of the inner cylinder is kept constant while the annular outer surface is adiabatic. The thickness effect of the inner pipe wall was considered. Naiver Stokes equation with Boussinesq approximation is used for the fluid regime while Brinkman-Forchheimer Darcy model is used for metal foam. In addition, the local thermal non-equilibrium condition in the energy equation of the porous media is presumed. The effect of Rayleigh numb |
Nanostructured Al2O3has been applied as a protective coating against corrosion of the carbon steel (C.S) in seawater environment (3.5% NaCl) at temperatures range (298-328)K. Aluminananoparticles were deposited on carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(acrylic acid) (PAA) as polymeric charging agent. Meanwhile, thesurface morphology was examined using Atomic-force microscopy (AFM). The cross-section AFM showed that the particles sizes for the Al2O3 NPs is around 60-80 nm. The anticorrosion behaviour of coated C.S was investigated in 3.5% NaCl at temperature range 298-328 K by potentiodynamic polarization measurements. Results show that using PAA in suspension coat incr
... Show MoreThe electric quadrupole moments for some scandium isotopes (41, 43, 44, 45, 46, 47Sc) have been calculated using the shell model in the proton-neutron formalism. Excitations out of major shell model space were taken into account through a microscopic theory which is called core polarization effectives. The set of effective charges adopted in the theoretical calculations emerging about the core polarization effect. NushellX@MSU code was used to calculate one body density matrix (OBDM). The simple harmonic oscillator potential has been used to generate the single particle matrix elements. Our theoretical calculations for the quadrupole moments used the two types of effective interactions to obtain the best interaction compared with the exp
... Show MoreBackground: Simultaneous and staged guided bone regeneration (GBR) is one of the several surgical techniques that have been developed in the past two decades to regenerate bone and thus to allow implant placement in compromised sites (fenestration and dehiscence). It is a surgical procedure that consists of the placement of a cell-occlusive physical barrier between the connective tissue and the alveolar bone defect. The treatment concept advocates that regeneration of osseous defects is predictably attainable via the application of occlusive membranes, which mechanically exclude non-osteogenic cell populations from the surrounding soft tissues, thereby allowing osteogenic cell populations originating from the parent bone to inhabi
... Show More