Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and 10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where they indicated that sensitivity reached 42.566% at 300 oC, spectral response time less than 52.2 s and recovery time 135.9 s.
In this work, an experimental research on a low voltage DC magnetron plasma sputtering (0-650) volt is used for coating gold on a glass substrate at a constant pressure of argon gas 0.2 mbar and deposition time of 30 seconds. We focused on the effects of operating conditions for the system such as, electrode separation and sputtering current on coated samples under the influence of magnetic flux. Electron temperature and electrons and ions densities are determined by a cylindrical single Langmuir probe. The results show the sensitivity of electrode separation lead to change the plasma parameters. Furthermore, the surface morphology of gold coated samples at different electrode separation and sputtering current were studied by atomic forc
... Show MoreThis study explored the development and qualities of the response of electrochemical properties of enrofloxacin-selective electrodes using precipitation based on producing phosphotungstic, after utilizing a matrix of polyvinyl chloride (PVC) and dibutyl phthalate or dibutyl phosphate as a plasticizer. The resulting membrane sensors were an enrofloxacin-phosphotungstic electrode (sensors 1) and an ENR-DOP-PTA electrode (sensors 2). Linear responses of (ENR-DBPH-PTA) and (ENR-DOP-PTA) within the concentration ranges of 2.1×10-6-10-1 and 3.0×10-6-10-2 mol. L-1, respectively, for both sensors were observed. Slopes of 51.61±0.24 and 39.40± 0.16 mV/decade and pH ranges equal to 2.5-8.5
... Show MoreThe electrical properties of pure NiO and NiO:Au Films which are
deposited on glass substrate with various dopant concentrations
(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Co
annealing temperature will be presented. The results of the hall effect
showed that all the films were p-type. The Hall mobility decreases
while both carrier concentration and conductivity increases with the
increasing of annealing temperatures and doping percentage, Thus,
indicating the behavior of semiconductor, and also the D.C
conductivity from which the activation energy decrease with the
doping concentration increase and transport mechanism of the charge
carriers can be estimated.
Thin films of vanadium oxide nanoparticles doped with different concentrations of europium oxide (2, 4, 6, and 8) wt % are deposited on glass and Si substrates with orientation (111) utilizing by pulsed laser deposition technique using Nd:YAG laser that has a wavelength of 1064 nm, average frequency of 6 Hz and pulse duration of 10 ns. The films were annealed in air at 300 °C for two hours, then the structural, morphological and optical properties are characterized using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy respectively. The X-ray diffraction results of V2O5:Eu2O3 exhibit that the film has apolycrystalline monoclinic V2O5 and triclinic V4O7 phases. The FESEM image shows a h
... Show MoreMeta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
During of Experimental result of this work , we found that the change of electrical conductivity proprieties of tin dioxide with the change of gas concentration at temperatures 260oC and 360oC after treatment by photons rays have similar character after treatment isothermally. We found that intensive short duration impulse annealing during the fractions of a second leads to crystallization of the films and to the high values of its gas sensitivity.