This study was conducted to isolate and identify killer yeast Hanseniaspora uvarum from dates vinegar and measurement the ability of this yeast to produce killer toxin. The antimicrobial activity of the concentrated supernatant containing partially purified concentrated killer toxin was also detected against several pathogenic bacteria and yeast species, which includes two types of yeast Rhodotorula mucilaginosa and Candida tropicalis and four human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeurginosa. In addition, the antagonistic activity of examined yeast have been studied toward four types of fungi, where two are pathogenic for human Trichophyton mentagrophytes and Trichophyton rubrum and two are plant pathogens Fusarium solani and Sclerotinia sclerotiorum. The results of killer toxin production experiments revealed the ability of yeast to produce killer toxin with molecular weight at 18 kDa by 12 % SDS electrophoresis. The optimal conditions for killer toxin production were studied, and their antimicrobial activity was determined. The results revealed that killer toxin production was increased at 4 % NaCl, the highest inhibtion zone was 20 mm for S. aureus, while the lowest inhibition zone was 7 mm for E. coli. Killer activity was increased at pH 4 and the best inhibtion zone obtained was about 16 mm for K. pneumoniae, while 8 mm for E. coli and C. tropicalis. The temperature was also affect the production of killer toxin, where 25 °C is the best temperature for toxin production of examined yeast, The best killer activity was 21 mm for C. tropicalis. The antagonistic activity of killer yeast H. uvarum toward pathogenic fungal growth was determined and showed killer activity about 61.11, 44.44, 33.33 and 24.44 % against T. mentagrophytes, T. rubrum, F. solani and S. sclerotiorum in comparison to the control.
The new ligand [N1,N4-bis((1H-benzo[d]Glyoxalin-2-yl)carbamothioyl)Butanedi amide] (NCB) derived from Butanedioyl diisothiocyanate with 2-aminobenz imidazole was used to prepare a chain of new metal complexes of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Ag(I), Cd(II) by general formula [M(NCB)]Xn ,Where M= Cr(III), n=3, X=Cl; Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Cd(II) ,n=2 , X=Cl; Ag(I), n=1, X=NO3. Characterized compounds on the basis of 1H, 13CNMR (for (NCB), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H, %N and %S, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA),while its corrosion inhibition for mild steel in Ca(OH)2 solution is studied by weight loss. These measureme
... Show MoreIn this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreThe new Schiff base 1‐[(2‐{1‐[(dicyclohexylamino)‐methyl]‐1H‐indol‐3‐yl}‐ethylimino)‐methyl]naphthalen‐2‐ol (HL) was prepared from 1‐{[2‐(1H‐Indol‐3‐yl)‐ethylimino] methyl}‐naphthalen‐2‐ol and dicyclohexyl amine. From this Schiff base, monomeric complexes [M (L)n (H2O)2 Cl2] with M = Cr, Fe, Mn, Cd, and Hg were synthesized and characterized based on elemental analysis (EA), FT‐IR, mass(MS), UV‐visible, thermal analysis, magnetic moment, and molar conductance. The results showed that the geometrical structural were octahedral geometries for the Cr(III) and Fe(III) complex
The new Schiff base 1‐[(2‐{1‐[(dicyclohexylamino)‐methyl]‐1H‐indol‐3‐yl}‐ethylimino)‐methyl]naphthalen‐2‐ol (HL) was prepared from 1‐{[2‐(1H‐Indol‐3‐yl)‐ethylimino] methyl}‐naphthalen‐2‐ol and dicyclohexyl amine. From this Schiff base, monomeric complexes [M (L)n (H2O)2 Cl2] with M = Cr, Fe, Mn, Cd, and Hg were synthesized and characterized based on elemental analysis (EA), FT‐IR, mass(MS), UV‐visible, thermal analysis, magnetic moment, and molar conductance. The results showed that the geometrical structural were octahedral geometries for the Cr(III) and Fe(III) complex
Pathogenic microorganisms are becoming more and more resistant to antimicrobial agents. So the synthesis of new antimicrobial agents is very important. In this work, new 5-fluoroisatin-chalcone conjugates 5(a–g) were synthesized based on previous research that showed the modifications of the isatin moiety led to the synthesis of many derivatives that have antimicrobial activity. 4-aminoacetophenone reacts with 5-fluoroisatin to form Schiff base (3), which in turn reacts with two different groups of aromatic (carbocyclic and heterocyclic) aldehydes 4(a–g) separately to form the final compounds 5(a–g). Proton-nuclear magnetic resonance (¹H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy were used to confirm the chemic
... Show MoreThe primary toxin class discovered in freshwater pufferfish is a category of neurotoxins called PSTs (Paralytic shellfish toxins) and pufferfish toxin has been observed to have biological, biochemical, and cytotoxic effects on cancer cell lines. Therefore, it is crucial to determine the cytotoxic activity, toxins present in the ovary of T. leiurus, and interaction between ligand (toxin compound) and receptors test. This study used the MTT method in the T47D cell lines, liquid chromatograph-tandem mass spectrometry (LC-MS/MS), and analysis of the molecular interaction using molecular docking. The ovary of T. leiurus had cytotoxicity on the T47D cell, having an IC50 value of 229.535 μg/ml, and generated a chroma
... Show MoreSchiff base of chitosan with Para-Dimethyl aminobenzaldehyde /PVA-Ag Nanocomposite have been prepared as antimicrobial polymer. The prepared chitosan Schiff base and chitosan Schiff base / PVA-Ag nanocomposite were characterized by FT-IR, SEM analysis and biological activity. The nanocomposite showed good activity against different types of bacteria.