The railways network is one of the huge infrastructure projects. Therefore, dealing with these projects such as analyzing and developing should be done using appropriate tools, i.e. GIS tools. Because, traditional methods will consume resources, time, money and the results maybe not accurate. In this research, the train stations in all of Iraq’s provinces were studied and analyzed using network analysis, which is one of the most powerful techniques within GIS. A free trial copy of ArcGIS®10.2 software was used in this research in order to achieve the aim of this study. The analysis of current train stations has been done depending on the road network, because people used roads to reach those train stations. The data layers for this study were collected and prepared to meet the requirements of network analyses within GIS. In this study, the current train stations in Iraq were analyzed and studied depending on accessibility value for those stations. Also, to know the numbers of people who can reach those stations within a walking time of 20 minutes. So, this study aims to analyze the current train stations according to multiple criteria by using network analysis in order to find the serviced areas around those stations. Results will be presented as digital maps layers with their attribute tables that show the beneficiaries from those train stations and serviced areas around those stations depending on specific criteria, with a view to determine the size of this problem and to support the decision makers in case of locating new train stations within the best locations for it.
The study aims at finding out the effect of the lead time strategy on the first intermediate class pupils' achievement in geography The partial experimental design of two groups, experimental and control, with pre-post tests is used. The sample is represented in (73) female pupils. The sample is divided into two groups (37) experimental group and (36) control one. The sam ple is selected from first intermediate class pupils ( Al Batol intermediate school for girls) Baghdad Al-karkh-3, for academic year 2015-2016 The researcher has equalized the two groups in several variables: the previous achievement tests, intelligence, age in months, the scores of geography test of first course
A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreA Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreA content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a
... Show MoreIn the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A
... Show MoreNovel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.
The research aims to shed light on banking liberalization and explain its impact on attracting customers, especially since Iraq adopted this policy after (2003) due to the changes that occurred, as the Central Bank of Iraq granted flexibility to banks in setting the interest rate on deposits and loans as well as allowing the entry of foreign banks in the local environment. The research relied on the analytical method for the dimensions of banking liberalization represented by (liberating interest rates, liberating credit, legal reserve requirements, entering foreign banks, privatization) as well as the factors affecting the attraction of customers, and a number of Iraqi banks listed in the Iraqi Stock Exchange were selected as a
... Show Moreعرف الإنسان اللؤلؤ منذ عصورما قبل التاريخ ، حيث كان يجمعه من الأصداف التي كانت تلقي بها الأمواج على الساحل . و لم تُمارس مهنة الغوص إلا في مرحلة لاحقة لم يحدد تاريخها .