The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual resource, by combining two types of algorithms: dynamic algorithm (adaptive firefly) and static algorithm (weighted round robin). The results show improvement in resource utilization, increased productivity, and reduced response time.
These search summaries in building a mathematical model to the issue of Integer linear Fractional programming and finding the best solution of Integer linear Fractional programming (I.L.F.P) that maximize the productivity of the company,s revenue by using the largest possible number of production units and maximizing denominator objective which represents,s proportion of profits to the costs, thus maximizing total profit of the company at the lowest cost through using Dinkelbach algorithm and the complementary method on the Light industries company data for 2013 and comparing results with Goal programming methods results.
It is clear that the final results of resolution and Dinkelbac
... Show More