The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual resource, by combining two types of algorithms: dynamic algorithm (adaptive firefly) and static algorithm (weighted round robin). The results show improvement in resource utilization, increased productivity, and reduced response time.
Objective: Assessment of health problems and identify demographical information to elderly. Methodology:
it is a descriptive study, data were collected by the researchers depended on the direct interview with the
elderly by using the study instrument (questionnaire) as well as review the records of the geriatric.
Results: The majority of study sample (66%) were males and (24.3%) were within age group (70-74) years,
(44.7%) were widows, and (41.7%) did not read and write. This study applied the international classification
of diseases(short-table) in (11) items, which stated that most of the elderly were complaining from
health problems: debility of hearing (80.65%), eczema or allergies (69.35%), debility of vision (66.9
In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.
In this research study failed Annunciation No. 10 for the fourth phase of the pressure of carbon dioxide of the company for Southern Fertilizers and repeated the failures more than once for the same gospel was a detailed study of the gospel included a series tests for properties Mechanical and Structural addition to the tests microscopic and scanning electron microscope shows m This study parameters and a failure Elal well as the existence of an old internal cracks in the metal of the Annunciation
this paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical
This study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This
... Show More