An overall mathematical model for copper pipe corrosion in flowing water was derived based on mass transfer fundamentals where we introduced the effects of boundary layer velocity, bulk flow velocity and the surface oxide protective film on the corrosion rate. A set of experiments were conducted in a straight 10mm diameter copper pipe, flow of water include six velocities of maximum value 7.33m/sec at 200C and 350C. The good agreement between the calculated and experimental corrosion rate values were achieved , the agreement reached 92% .
Copper oxide nanoparticles (CuO NPs) were synthesized by two methods. The first was chemical method by using copper nitrate Cu (NO3)2 and NaOH, while the second was green method by using Eucalyptus camaldulensis leaves extract and Cu (NO3)2. These methods easily give a large scale production of CuO nanoparticles. X-ray diffraction pattern (XRD) reveals single phase monoclinic structure. The average crystalline size of CuO NPs was measured and used by Scherrer equation which found 44.06nm from chemical method, while the average crystalline size was found from green method was 27.2nm. The morphology analysis using atomic force microscopy showed that the grain size for CuO NPs was synthesized by chemical and green methods were 77.70 and 89.24
... Show MoreThe accelerating effect of 1,4- phenylenediamine (PDA) additions in 1M hydrochloric acid solution at temperature rang (20-60) C° has been studied by weight losses measurement during ranging time (1-260) h and by following the pb2+ concentration in solution after several times by using Atomic absorption spectroscopy (AAS) . The volume of hydrogen gas involving was followed also in presence and absence of (PDA) in the corrosive solution .Accelerating enhanced by adding (NaCl , NaBr , NaI ) was also investigated.
Water flow into unsaturated porous media is governed by the Richards’ partial differential equation expressing the mass conservation and Darcy’s laws. The Richards’ equation may be written in three forms,where the dependent variable is pressure head or moisture content, and the constitutive relationships between water content and pressure head allow for conversion of one form into the other. In the present paper, the “moisture-based" form of Richards’ equation is linearized by applying Kirchhoff’s transformation, which
combines the soil water diffusivity and soil water content. Then the similarity method is used to obtain the analytical solution of wetting front position. This exact solution is obtained by means of Lie’s
In the current work, Punica granatum L. peel, Artemisia herba-alba Asso., Matricaria chamomilla L., and Camellia sinensis extracts were used to prepare manganese dioxide (MnO2) nanoparticles utilizing a green method. Energy-dispersive X-ray (EDX) analysis, Fourier Transform Infrared Spectroscopy (FTIR) analysis, and Filed emission-scanning electron microscopy (FE-SEM) analysis were used to evaluate the produced MnO2 NPs. FE-SEM pictures demonstrated how agglomerated nanoparticles formed. According to FE-SEM calculations, the particle size ranged from 18.7-91.5 nm. FTIR spectra show that pure Mn-O is formed, while EDX results show that Mn and O are present. The ability to suppress biofilm growth in the produced MnO
In this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite struct
... Show MoreExperimental and numerical studies have been conducted for the effect of injected air bubbles on the heat transfer coefficient through the water flow in a vertical pipe under the influence of uniform heat flux. The investigated parameters were water flow rate of (10, 14 and 18) lit/min, air flow rate of (1.5, 3 and 4) lit/min for subjected heat fluxes of (27264, 36316 and 45398) W/m2. The energy, momentum and continuity equations were solved numerically to describe the motion of flow. Turbulence models k-ε was implemented. The mathematical model is using a CFD code Fluent (Ansys15). The water was used as continuous phase while the air was represented as dispersed. phase. The experimental work includes design, build and instrument a test
... Show More