In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
In this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.
This paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreThe linear segment with parabolic blend (LSPB) trajectory deviates from the specified waypoints. It is restricted to that the acceleration must be sufficiently high. In this work, it is proposed to engage modified LSPB trajectory with particle swarm optimization (PSO) so as to create through points on the trajectory. The assumption of normal LSPB method that parabolic part is centered in time around waypoints is replaced by proposed coefficients for calculating the time duration of the linear part. These coefficients are functions of velocities between through points. The velocities are obtained by PSO so as to force the LSPB trajectory passing exactly through the specified path points. Also, relations for velocity correction and exact v
... Show MoreIn this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.
In this paper, we propose a method using continuous wavelets to study the multivariate fractional Brownian motion through the deviations of the transformed random process to find an efficient estimate of Hurst exponent using eigenvalue regression of the covariance matrix. The results of simulations experiments shown that the performance of the proposed estimator was efficient in bias but the variance get increase as signal change from short to long memory the MASE increase relatively. The estimation process was made by calculating the eigenvalues for the variance-covariance matrix of Meyer’s continuous wavelet details coefficients.
Darcy-Weisbach (D-W) is a typical resistance equation in pressured flow; however, some academics and engineers prefer Hazen-Williams (H-W) for assessing water distribution networks. The main difference is that the (D-W) friction factor changes with the Reynolds number, while the (H-W) coefficient is a constant value for a certain material. This study uses WaterGEMS CONNECT Edition update 1 to find an empirical relation between the (H-W) and (H-W) equations for two 400 mm and 500 mm pipe systems. The hydraulic model was done, and two scenarios were applied by changing the (H-W) coefficient to show the difference in results of head loss. The results showed a strong relationship between both equations with correlation coefficients of 0.999,
... Show MoreThis paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show More