This study synthesized zeolite 4A, and hierarchical composite structure consisting of zeolite 4A- carbon were successfully prepared. Hydrothermal method was used to grow a layer of zeolite 4A over porous carbon surfaces to enhance mass transfer and increase surface area of zeolite. The products then were used to remove radioactive cesium137Cs from liquid wastewater. Iraqi dates leaves midribs (DM) were used as locally available agricultural waste to prepare low- cost porous carbon, using carbonization method in tubular furnace at 900C for two hours. Hierarchical porous structures including zeolite are prepared by mechanically activating the carbon surface via Ultrasonicating nanoparticles suspension of ground zeolite type 4A.For preparing nanoparticles suspension, commercial zeolite has been milled using 0.3-0.4 mm diameter glass balls as grinding media. Nanoparticles of zeolite 4A acting as seeding (nucleation centers) increase the crystallization of amorphous aluminosilica gel on modification carbon surface. The products of the syntheses zeolite 4A and the hierarchal composite materials (DMZ) were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Nitrogen sorption (BET) and Energy dispersive X-ray spectrometer (EDX) to check the morphology, structure, surface area, and the chemical composition respectively. The products were used to treat radioactive wastewater contaminated with radioactive cesium 137Cs collected from destroyed building of the Radiochemistry Laboratories (RCL) in AL-Tuwaitha Nuclear Site. The activity concentration for the contamination water pre and after the treatment were measured using gamma spectroscopy system supplied with a high purity germanium detector (HPGe) with 60% relative efficiency. The results showed that the radioactivity concentration after the treatment process decreased significantly from 4800 Bq/L to 186 and Bq/L,121 Bq/L using 0.045 gm from synthesized zeolite 4A and DMZ respectively.
A step to net-zero of carbon dioxide losses in the microalgae cultivation process was targeted in the current study. This research was carried out by using pre-dissolved inorganic carbon (DIC) as a source of carbon with two doses of twenty-five and fifty millilitres.
A new method is characterized by simplicity, accuracy and speed for determination of Oxonuim ion in ionisable inorganic acid such as hydrochloric (0.1 - 10) ,Sulphuric ( 0.1 - 6 ),nitric ( 0.1 - 10 ), perchloric ( 0.1 - 7 ), acetic (0.1 - 100 ) and phosphoric ( 0.1 - 30 ) ( mMol.L-1 )acids. By continuous flow injection analysis. The proposed method was based on generation of bromine from the Bro-3-Br-- H3O+. Bromine reacts with fluorescein to quenches the fluorescence . A sample volume no.1 (31μl) and no.2 (35μl) were used with flow rate of 0.95 mL.min-1 using H2O line no.1as carrier stream and 1.3 mL.min-1 using fluorescein sodium salt line no.2. Linear regression of the concentration ( mMol.L-1 ) Vs quenched fluorescence gives a correla
... Show MoreThe objective of present study was to investigate the effect of using mixture volaticle oil of rosmarinus and nigella sativa to improve some of the meat quality characteristics, physical and limited storage time of minced cold poultry meat. Duplex volaticle oil was added at 0.025, 0.050 and 0.075 g/kg to minced poultry meat, these treatments were stored individually for 0 , 4 and 7 days at 4-7C0. After making several chemical, physical and oxidation indicators, the following results were obtained:
The process of adding volaticle oil to minced poultry meat led to significant increase (P<0.01)in moisture, prot
... Show MoreThis work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z
... Show MoreThe faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
This work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z
... Show More