Preferred Language
Articles
/
bsj-3011
Comparing Weibull Stress – Strength Reliability Bayesian Estimators for Singly Type II Censored Data under Different loss Functions
...Show More Authors

     The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery] and also an empirical Bayes estimator Using Gamma Prior, for singly type II censored sample. An empirical study has been used to make a comparison between the three estimators of the reliability for stress – strength Weibull model, by mean squared error MSE criteria, taking different sample sizes (small, moderate and large) for the two random variables in eight experiments of different values of their parameters. It has been found that the weighted loss function was the best for small sample size, and the entropy and Quadratic were the best for moderate and large sample sizes under the two prior distributions and for empirical Bayes estimation.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Survival estimation for singly type one censored sample based on generalized Rayleigh distribution
...Show More Authors

This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.

View Publication Preview PDF
Crossref
Publication Date
Tue Feb 13 2024
Journal Name
Iraqi Journal Of Science
Parameters Estimation for Modified Weibull Distribution Based on Type One Censored Samplest
...Show More Authors

The three parameters distribution called modified weibull distribution (MWD) was introduced first by Sarhan and Zaindin (2009)[1]. In theis paper, we deal with interval estimation to estimate the parameters of modified weibull distribution based on singly type one censored data, using Maximum likelihood method and fisher information to obtain the estimates of the parameters for modified weibull distribution, after that applying this technique to asset of real data which taken for Leukemia disease in the hospital of central child teaching .

View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Using Approximation Non-Bayesian Computation with Fuzzy Data to Estimation Inverse Weibull Parameters and Reliability Function
...Show More Authors

        In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson” and the “Expectation-Maximization” techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Inference for the Parameter and Reliability Function of Basic Gompertz Distribution under Precautionary loss Function
...Show More Authors

     In this paper, some estimators for the unknown shape parameter and reliability function of Basic Gompertz distribution have been obtained, such as Maximum likelihood estimator and Bayesian estimators under Precautionary loss function using Gamma prior and Jefferys prior. Monte-Carlo simulation is conducted to compare mean squared errors (MSE) for all these estimators for the shape parameter and integrated mean squared error (IMSE's) for comparing the performance of the Reliability estimators. Finally, the discussion is provided to illustrate the results that summarized in tables.

View Publication Preview PDF
Crossref
Publication Date
Mon Sep 16 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods of the Stress-Strength Reliability Power Distribution
...Show More Authors

      This paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package.

View Publication Preview PDF
Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for the Parameters and Reliability Function of Basic Gompertz Distribution under Squared Log Error Loss Function
...Show More Authors

In this paper, some estimators for the unknown shape parameters and reliability function of Basic Gompertz distribution were obtained, such as Maximum likelihood estimator and some Bayesian estimators under Squared log error loss function by using Gamma and Jefferys priors. Monte-Carlo simulation was conducted to compare the performance of all estimates of the shape parameter and Reliability function, based on mean squared errors (MSE) and integrated mean squared errors (IMSE's), respectively. Finally, the discussion is provided to illustrate the results that are summarized in tables.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Semiparametric Bayesian Method with Classical Method for Estimating Systems Reliability using Simulation Procedure
...Show More Authors

               In this research, the semiparametric Bayesian method is compared with the classical  method to  estimate reliability function of three  systems :  k-out of-n system, series system, and parallel system. Each system consists of three components, the first one represents the composite parametric in which failure times distributed as exponential, whereas the second and the third components are nonparametric ones in which reliability estimations depend on Kernel method using two methods to estimate bandwidth parameter h method and Kaplan-Meier method. To indicate a better method for system reliability function estimation, it has be

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compared Some Estimators Ordinary Ridge Regression And Bayesian Ridge Regression With Practical Application
...Show More Authors

Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the  method To address a problem  and  method To address a problem , In this research a comparisons are employed between the biased   method and unbiased   method with Bayesian   using Gamma distribution  method  addition to Ordinary Least Square metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Notes on Weibull Distribution
...Show More Authors

Weibull Distribution is one of most important distribution and it is mainly used in reliability and in distribution of life time. The study handled two parameter and three-parameter Weibull Distribution in addition to five –parameter Bi-Weibull distribution. The latter being very new and was not mentioned before in many of the previous references. This distribution depends on both the two parameter and the three –parameter Weibull distributions by using the scale parameter (α) and the shape parameter (b) in the first and adding the location parameter (g)to the second and then joining them together to produce a distribution with five parameters.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimate the Parallel System Reliability in Stress-Strength Model Based on Exponentiated Inverted Weibull Distribution
...Show More Authors
Abstract<p>In this paper, we employ the maximum likelihood estimator in addition to the shrinkage estimation procedure to estimate the system reliability (<italic>R<sub>k</sub> </italic>) contain <italic>K<sup>th</sup> </italic> parallel components in the stress-strength model, when the stress and strength are independent and non-identically random variables and they follow two parameters Exponentiated Inverted Weibull Distribution (EIWD). Comparisons among the proposed estimators were presented depend on simulation established on mean squared error (MSE) criteria.</p>
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref