Preferred Language
Articles
/
bsj-2993
Acoustic and Thermal Insulation of Nanocomposites for Building Material: Improvement Of Sound And Thermal Insulation Properties Of Nanocomposite
...Show More Authors

This work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcement materials to the optimum sample. Results of impact test prove that the optimum sample has (80:20) wt. % of mixing ratio of (epoxy: polyester) wt. % for using as matrix materials. Moreover, the adding of nanoclay (Kaolinite) with ratio (7.5 wt.%) leads to the highest sound insulation. The sound intensity started at (99.8) db at 100 Hz, and reached to (101.3) db at 10000 Hz., which is much lower than the values obtained from the un-reinforced blend, of which the sound intensity started at (107.2) db and reached to (108.7) db., at the same range of frequencies. Thermal conductivity results show that the optimum matrix with (7.5 %) wt. % has the lowest value about (0.443 k.w\m .c).

        The results show that the blend reinforced with nano clay in a weight fraction (7.5)% has the best sound insulation, so that the sound intensity started at (99.8) db at 100 Hz., and reached (101.3) db at 10000 Hz., which is much lower than the values obtained from the unreinforced blend, of which the sound intensity started at (107.2) db and reached (108.7) db., applying the same range of frequencies. The same casting (blend+7.5% nanoclay) showed the lowest value of thermal conductivity (xxxx) W.m°C in comparison with castings that were made of unreinforced blend and those  hybridized with rockwool.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 02 2022
Journal Name
Polymers
Ameliorating the Mechanical Parameters, Thermal Stability, and Wettability of Acrylic Polymer by Cement Filling for High-Efficiency Waterproofing
...Show More Authors

Acrylic polymer/cement nanocomposites in dark and light colors have been developed for coating floors and swimming pools. This work aims to emphasize the effect of cement filling on the mechanical parameters, thermal stability, and wettability of acrylic polymer. The preparation was carried out using the casting method from acrylic polymer coating solution, which was added to cement nanoparticles (65 nm) with weight concentrations of (0, 1, 2, 4, and 8 wt%) to achieve high-quality specifications and good adhesion. Maximum impact strength and Hardness shore A were observed at cement ratios of 2 wt% and 4 wt%, respectively. Changing the filling ratio has a significant effect on the strain of the nanocomposites. The contact angle was i

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
A Five Variable Refined Plate Theory For Thermal Buckling Analysis Uniform And Nonuniform Of Cross-Ply Laminated Plates
...Show More Authors

This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critica

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Effect of tempering on thermal analysis of Al-Ti-Si alloy and its composites
...Show More Authors

The investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Treatment of Slack Wax by Thermal Cracking Process
...Show More Authors

This work deals with thermal cracking of slack wax produced as a byproduct from solvent dewaxing process of medium lubricating oil fraction in AL-Dura refinery. The thermal cracking process was carried out at a temperature ranges 480-540 ºC and atmospheric pressure. The liquid hourly space velocity (LHSV) for thermal cracking was varied between 1.0-2.5 . It was found that the conversion increased (61 - 83) with the increasing of reaction temperature (480 - 540) and decreased (83 - 63) with the increasing of liquid hourly space velocity (1.0 - 2.5).
The maximum gasoline yield obtained by thermal cracking process (48.52 wt. % of feed) was obtained at 500 ºC and liquid hour space velocity 1 . The obtaining liquid product at the best op

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 30 2019
Journal Name
Journal Of Engineering
Thermal Performance of Plastic Receiver in Solar Collector
...Show More Authors

A plastic tubes used as absorber of active flat plate solar collector (FPSC) for heating water were studied numerically and experimentally. The set-up is located in Babylon (republic of Iraq) 43.80 East longitude and 32.30 North latitude with titled of 450 toward the south direction.  The study involved three dimensions mathematical model for flat coil plastic absorber which solved by FLUENT-ANSYS-R.18 program. Experiments were conducted at outdoor conditions for clear days on January and February 2018 with various water volume flow rates namely (500, 750, 1000, 1250, and 1500 Liter per hour LPH) on each month for Reynolds number range of (1 x 104 to 5 x 104) th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Mar 07 2022
Journal Name
Journal Of Inorganic And Organometallic Polymers And Materials
Mechanical Characteristics and Thermal Stability of Hybrid Epoxy and Acrylic Polymer Coating/Nanoclay of Various Thicknesses
...Show More Authors

View Publication
Crossref (27)
Crossref
Publication Date
Mon Sep 10 2018
Journal Name
Iraqi Journal Of Physics
Thermal conductivity and diffusion coefficient of polymer blend 80%EP/20%UPE reinforced with sand particles
...Show More Authors

New polymer blend with enhanced properties was prepared from (80 %) epoxy resin (Ep), (20%) unsaturated polyester resin (UPE) as a matrix material. The as-obtained polymer blend was further reinforced by adding Sand particles of particle size (53 μm) with various weight fraction (5, 10, 15, 20 %). Thermal conductivity and sorption measurements are performed in order to determine diffusion coefficient in different chemical solutions (NaOH, HCl) with concentration (0.3N) after immersion for specific period of time (30 days). The obtained results demonstrate that the addition of sand powder to (80%EP/20%UPE) blend leads to an increase of thermal conductivity, with an optimum/minimum diffusion coefficient in (HCl)/(NaOH), respectively.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jul 29 2022
Journal Name
Research Journal Of Pharmacy And Technology
Characterization and Testing the properties of PEKK- Strontium- hydroxyapatite composite material
...Show More Authors

Polymers, being one of the most important materials in dentistry, offer great physical and mechanical qualities, as well as good biocompatibility. Aim of this study was done to evaluate the Polyetherketoneketone and Polyetherketoneketone polymer composite material used as dental implant through tensile strength, Fourier Transform Infrared analysis FTIR, and wettability). Polyetherketoneketone composites (Polyetherketoneketone and Strontium-containing hydroxyapatite) with selected weight percentage ratios of (0, 10%, 20%, 30%), were fabricated using a compression molding technique”, The study involved Samples preparation (sheets) shaped and form into the desired shape according to standard for tests which included tensile strength,

... Show More
View Publication
Scopus (7)
Crossref (5)
Scopus Crossref
Publication Date
Tue Apr 01 2014
Journal Name
International Communications In Heat And Mass Transfer
Determination of a time-dependent thermal diffusivity and free boundary in heat conduction
...Show More Authors

View Publication
Scopus (18)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Study the effect of thermal annealing on some physical properties of thin Cu2SiO3 films prepared by pulsed laser deposition
...Show More Authors

The Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici

... Show More
View Publication Preview PDF
Crossref