Preferred Language
Articles
/
bsj-2993
Acoustic and Thermal Insulation of Nanocomposites for Building Material: Improvement Of Sound And Thermal Insulation Properties Of Nanocomposite
...Show More Authors

This work aims to enhance acoustic and thermal insulation properties for polymeric composite by adding nanoclay and rock wool as reinforcement materials with different rations. A polymer blend of (epoxy+ polyester) as matrix materials was used. The Hand lay-up technique was used to manufacture the castings. Epoxy and polyester were mixed at different weight ratios involving (50:50, 60:40, 70:30, 80:20, and 90:10) wt. % of (epoxy: polyester) wt. % respectively. Impact tests for optimum sample (OMR), caustic and thermal insulation tests were performed. Nano clay (Kaolinite) with ratios ( 5 and 7.5% ) wt.% , also hybrid reinforcement materials involving (Kaolite 5 & 7.5 % wt.% + 10% volume fraction of rockwool ) were added as reinforcement materials to the optimum sample. Results of impact test prove that the optimum sample has (80:20) wt. % of mixing ratio of (epoxy: polyester) wt. % for using as matrix materials. Moreover, the adding of nanoclay (Kaolinite) with ratio (7.5 wt.%) leads to the highest sound insulation. The sound intensity started at (99.8) db at 100 Hz, and reached to (101.3) db at 10000 Hz., which is much lower than the values obtained from the un-reinforced blend, of which the sound intensity started at (107.2) db and reached to (108.7) db., at the same range of frequencies. Thermal conductivity results show that the optimum matrix with (7.5 %) wt. % has the lowest value about (0.443 k.w\m .c).

        The results show that the blend reinforced with nano clay in a weight fraction (7.5)% has the best sound insulation, so that the sound intensity started at (99.8) db at 100 Hz., and reached (101.3) db at 10000 Hz., which is much lower than the values obtained from the unreinforced blend, of which the sound intensity started at (107.2) db and reached (108.7) db., applying the same range of frequencies. The same casting (blend+7.5% nanoclay) showed the lowest value of thermal conductivity (xxxx) W.m°C in comparison with castings that were made of unreinforced blend and those  hybridized with rockwool.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Comparison the Physical and Mechanical Properties of Composite Materials (Al /SiC and Al/ B4C) Produced by Powder Technology
...Show More Authors

In this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Grain and Calcinations Kaolin Additives on Some Mechanical and Physical properties on Low Density Polyethylene Composites
...Show More Authors

In this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
The Saudi Dental Journal
Evaluation of some mechanical properties of a new silicone elastomer for maxillofacial prostheses after addition of intrinsic pigments
...Show More Authors

Objective: The approximate life span of a silicone maxillofacial prosthesis is as short as1.5–2 years of clinical service, then a new prosthesis should be fabricated. The most common reasonfor re-making the prosthesis is silicone mechanical properties degradation. The aim of this studywas to assess some mechanical properties of VST-30 silicone for maxillofacial prostheses after addi-tion of intrinsic pigments.Methods: Two types of intrinsic pigments (rayon flocking and burnt sienna); each of them wasincorporated into silicone. One hundred and twenty samples were prepared and split into 4 groupsaccording to the conducted tests (tear strength, hardness, surface roughness, and tensile strengthand elongation percentage) with 30 samples for ea

... Show More
View Publication
Scopus (23)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Study the electronic and spectroscopic properties of ALxB7-XN7 Wurtzoids as a function of size and concentration using density functional theory
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Oct 23 2024
Journal Name
Polymers
Improving the Mechanical, Thermoelectric Insulations, and Wettability Properties of Acrylic Polymers: Effect of Silica or Cement Nanoparticles Loading and Plasma Treatment
...Show More Authors

The acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe

... Show More
View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Study the electronic and spectroscopic properties of ALxB7-XN7 Wurtzoids as a function of size and concentration using density functional theory
...Show More Authors

Electronic properties including (bond length, energy gap, HOMO, LUMO and density of state) as well as spectroscopic properties such like infrared, Raman scattering, force constant, reduced mass and longitu- dinal optical mode as a function of frequency are based on size and concentration of the molecular and nanostructures of aluminum nitride ALN, boron nitride BN and AlxB7-XN7 as nanotubes has calculated using Ab –initio approximation method dependent on density functional theory and generalized gradient approximation. The geometrical structure are calculated by using Gauss view 05 as a complementary program. Shows the energy gap of ALN, BN and AlxB7-XN7 as a function of the total number of atoms , start from smallest molecule to reached

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Post Fire Residual Concrete and Steel Reinforcement Properties
...Show More Authors

he paper presents the results of exposure of normal concrete to high temperatures (400 and 700°C). In addition to the exposure of steel reinforcement bar Ø 12 mm, where two types of steel reinforcement burning situations were performed. Directly exposed to high temperatures (400 and 700°C) and others were covered by concrete layer (15 mm). From the experimental results of fire exposure for 1 hour of 400 and 700°C and gradually cooled, it was found that the residual average percentage of compressive strength of concrete was 85.3 and 41.4%, while the residual average percentage of modulus of elasticity of concrete was 75 and 48%, respectively. The residual average percentage of yielding tensile stress (Ø 12 mm) after burning and cooling

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
A Study of structural and electrical properties ofCuIn (Sex Te1-x) 2 thin films
...Show More Authors

structural and electrical of CuIn (Sex Te1-x)2

View Publication Preview PDF
Crossref
Publication Date
Tue Apr 05 2022
Journal Name
Nano Hybrids And Composites
Structural and Optical Properties of ZnO Nanostructures Synthesized by Hydrothermal Method at Different Conditions
...Show More Authors

Zinc oxide (ZnO) nanoparticles were synthesized using a modified hydrothermal approach at different reaction temperatures and growth times. Moreover, a thorough morphological, structural and optical investigation was demonstrated using scanning electron microscopy (SEM), x-ray diffraction (XRD), ultra-violate visible light spectroscopy (UV-Vis.), and photoluminescence (PL) techniques. Notably, SEM analysis revealed the occurrence of nanorods-shaped surface morphology with a wide range of length and diameter. Meanwhile, a hexagonal crystal structure of the ZnO nanoparticles was perceived using XRD analysis and crystallite size ranging from 14.7 to 23.8 nm at 7 and 8 ℎ𝑟𝑠., respectively. The prepared ZnO samples showed good abso

... Show More
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Structural and Optical Properties of SnS2:Cu Thin films prepared by chemical Spbay Pyrolysis
...Show More Authors

Thin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm

... Show More
View Publication Preview PDF
Crossref (1)
Crossref