Software Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we evaluate the video transmission over the SDN with Bellman Ford algorithm. Then, because the limitation of Bellman ford algorithm, the Dijkstra algorithm is used to change the path when a congestion occurs. Furthermore, the Dijkstra algorithm is used with two controllers to reduce the time consumed by the SDN controller. POX and Pyretic SDN controllers are used such that POX controller is responsible for the network monitoring, while Pyretic controller is responsible for the routing algorithm and path selection. Finally, a modified Dijkstra algorithm is further proposed and evaluated with two controllers to enhance the performance. The results show that the modified Dijkstra algorithm outperformed the other approaches in the aspect of QoS parameters.
Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
In this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint
... Show MoreHerein, an efficient inorganic/organic hybrid photocatalyst composed of zeolitic imidazolate framework (ZIF-67) decorated with Cd0.5Zn0.5S solid solution semiconductor was constructed. The properties of prepared ZIF- [email protected] nanocomposite and its components (ZIF-67 and Cd0.5Zn0.5S) were investigated using XRD, FESEM, EDX, TEM, DRS and BET methods. The photocatalytic activity of fabricated [email protected] nanocomposite were measured toward removal of methyl violet (MV) dye as a simulated organic contaminant. Under visible-light and specific conditions (photocatalyst dose 1 g/l, MV dye 10 mg/l, unmodified solution pH 6.7 and reaction time 60 min.), the acquired [email protected] photocatalyst showed advanced photocatalytic activity
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreThe object of this study is to establish a global model to use of DeNovo programming the strategies of multi-Decision making process in the city of Baghdad.
Thus, we have chosen an important and an effective subject in the life of the citizen due to the importance of this subject in the Iraqi citizen of luck of water and for many reasons.
In this thesis, we have tackled the establishment of a global model to be able to reach solution or an alternative model a money the available alternative.
The alternative proposed here utilizes the application of the (DeNovo) programming approach suggested by (1982) in solving t
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show More