Software Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we evaluate the video transmission over the SDN with Bellman Ford algorithm. Then, because the limitation of Bellman ford algorithm, the Dijkstra algorithm is used to change the path when a congestion occurs. Furthermore, the Dijkstra algorithm is used with two controllers to reduce the time consumed by the SDN controller. POX and Pyretic SDN controllers are used such that POX controller is responsible for the network monitoring, while Pyretic controller is responsible for the routing algorithm and path selection. Finally, a modified Dijkstra algorithm is further proposed and evaluated with two controllers to enhance the performance. The results show that the modified Dijkstra algorithm outperformed the other approaches in the aspect of QoS parameters.
In this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model duri
... Show MoreIn this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show MoreIn this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model during di
... Show MoreIn recent years, English language teaching and second language acquisition has demonstrated a significant accentuation upon basic reasoning abilities improvement in the language capability advancement. Encouraging a point of view of duty to training basic intuition aptitudes in accordance with the English language courses, this paper gives an account of an investigation directed at theoretical meanings of basic deduction, drifts about the centrality of basic speculation for language educating and associations between critical thinking and language learning. The educators have the focal pretended by basic intuition in successful language teaching method, identified to Ennis’ (2011) critical thinking categories. The skill of thinking critic
... Show MoreThe predilection for 5G telemedicine networks has piqued the interest of industry researchers and academics. The most significant barrier to global telemedicine adoption is to achieve a secure and efficient transport of patients, which has two critical responsibilities. The first is to get the patient to the nearest hospital as quickly as possible, and the second is to keep the connection secure while traveling to the hospital. As a result, a new network scheme has been suggested to expand the medical delivery system, which is an agile network scheme to securely redirect ambulance motorbikes to the nearest hospital in emergency cases. This research provides a secured and efficient telemedicine transport strategy compatible with the
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreBiomarkers to detect Alzheimer’s disease (AD) would enable patients to gain access to appropriate services and may facilitate the development of new therapies. Given the large numbers of people affected by AD, there is a need for a low-cost, easy to use method to detect AD patients. Potentially, the electroencephalogram (EEG) can play a valuable role in this, but at present no single EEG biomarker is robust enough for use in practice. This study aims to provide a methodological framework for the development of robust EEG biomarkers to detect AD with a clinically acceptable performance by exploiting the combined strengths of key biomarkers. A large number of existing and novel EEG biomarkers associated with slowing of EEG, reductio
... Show More